
UNIVERSIDADE DE LISBOA

Faculdade de Ciências

Departamento de Informática

LOST: LEADING OTHERS THROUGH SECURE
TRAILS

André Gonçalves da Silva

DISSERTAÇÃO

MESTRADO EM ENGENHARIA INFORMÁTICA

Especialização em Sistemas de Informação

2014

UNIVERSIDADE DE LISBOA

Faculdade de Ciências

Departamento de Informática

LOST: LEADING OTHERS THROUGH SECURE
TRAILS

André Gonçalves da Silva

DISSERTAÇÃO

MESTRADO EM ENGENHARIA INFORMÁTICA

Especialização em Sistemas de Informação

Trabalho orientado pelo Prof. Doutor Luís Manuel Pinto da Rocha Afonso Carriço e

coorientado por Diogo Homem Marques

2014

ii

iii

Agradecimentos

O presente trabalho e toda a minha formação não teriam sido possíveis sem a

presença de pessoas e entidades que considero importantes. Quero começar por

agradecer aos meus pais por me possibilitarem o acesso à faculdade e me darem suporte

durante todo o meu percurso académico. Agradeço também a todos os professores da

FCUL que contribuíram para a minha formação técnica, e por vezes social, através de

projetos aliciantes e aulas apresentadas com rigor. A todos os colegas com quem

trabalhei na faculdade, mostrando o grande espírito de entreajuda que existe entre os

alunos do DI. Quero agradecer especialmente ao Daniel Silva, Nuno Pinto, Adelino

Silva, Bruno Neves, Vera Conceição e Sara Aragão pelos bons resultados que

obtivemos ao trabalhar juntos e também por boas conversas e momentos divertidos.

Muitos outros colegas também tiveram uma participação importante na minha formação

académica, principalmente na concretização de trabalhos de grupo. Todos, de uma

forma ou outra, contribuíram para o que sou hoje e para a minha formação técnica.

Apesar de não os incluir numa listagem exaustiva, também lhes deixo aqui os meus

agradecimentos.

Sobre este trabalho em concreto, começo por agradecer ao professor Luís Carriço

pela oportunidade que me possibilitou trabalhar neste projeto e pelas reuniões com

partilhas de ideias e novas funcionalidades interessantes para o projeto. Agradeço ao

Diogo Marques que me permitiu avançar em etapas mais difíceis do projeto, partilhando

o seu conhecimento, experiência e recomendações para fazer um trabalho melhor.

Quero também agradecer às pessoas que participaram nos estudos, especialmente ao

André Rodrigues, que contribuiu no desenvolvimento de alguns módulos essenciais ao

projeto. Sem estas pessoas, seria impossível melhorar o projeto e ter a opinião de

possíveis utilizadores do mesmo. Por fim, quero agradecer às pessoas com quem

trabalhei dentro do LaSIGE, que me auxiliaram com dicas para o meu trabalho e me

ajudaram a integrar no posto de trabalho. Estendo ainda estes agradecimentos ao

LaSIGE como grupo e à ADMIN por me fornecerem as condições e ferramentas

necessárias para o desenvolvimento deste trabalho.

iv

v

Resumo

A ocorrência de catástrofes no Haiti, Japão, e mais recentemente nas Filipinas,

trouxe a lume situações de isolamento, dificuldade de procura e salvamento, mesmo

dispondo das mais modernas tecnologias. Essas tecnologias orientam-se sobretudo para

uso pelas equipas de salvamento, ficando as vítimas com um papel passivo durante a

situação. Se é verdade que essas tecnologias melhoram o desempenho das tarefas de

salvamento, a atuação das vítimas e/ou de equipas de voluntários locais no terreno pode

ainda introduzir mais sucesso nessas tarefas, desde que não interfira com as primeiras.

Os voluntários costumam ser pessoas muito motivadas para ajudar amigos ou

conhecidos que tenham sido afetados pelo desastre, e as vítimas podem ter informação

sobre a situação para partilhar. Por isso, existe a possibilidade de colocar voluntários e

vítimas a trabalhar em conjunto para auxiliar os salvadores nas operações de

salvamento. Desta forma, as vítimas poderiam partilhar informação potencialmente

valiosa sobre o local e as condições onde se encontram atualmente, enquanto os

voluntários poderiam, de acordo com o seu conhecimento sobre a localidade, encontrar

facilmente essas vítimas através dessas pequenas pistas e indicações.

Assim, o projeto Leading Others through Secure Trails (LOST) tem como

objetivo o desenvolvimento de um conjunto de ferramentas que auxiliem as vítimas e

voluntários em situações pós catástrofe. Estas ferramentas são sobretudo direcionadas

para dispositivos modernos, tais como computadores portáteis, smartphones ou tablets,

devido à sua popularidade e cada vez maior presença no quotidiano das pessoas. Mesmo

sem acesso a redes infraestruturadas típicas, como redes móveis ou hotspots de ligação

sem fios púbicos, as vítimas devem ser capazes de pedir ajuda usando mensagens de

texto, que podem adicionalmente conter informações sobre o contexto atual, ou no

mínimo, ter acesso a um mecanismo que lhes permita ter a sua presença assinalada num

mapa para que salvadores, oficiais ou não, possam encontrá-las com mais facilidade.

Essas aplicações devem ainda considerar situações de interação fortemente limitadas: os

dispositivos que as vítimas transportam consigo têm um nível de bateria limitado e, por

vezes, recursos computacionais de baixo nível; a ligação a redes de comunicação

públicas pode ser intermitente ou até inexistente; as vítimas podem estar feridas e, por

isso, indisponíveis para interagir com os seus dispositivos, etc.

Atualmente, o projeto LOST conta com três ferramentas base para suportar os

requisitos mencionados: uma ferramenta de comunicação independente de redes

vi

estruturadas, cuja comunicação depende exclusivamente dos dispositivos que as vítimas

transportam consigo; um mapa dinâmico baseado em tecnologias web onde é possível

ter uma visão geral da situação, ver as vítimas, categorizá-las e obter elementos que

possam ajudar salvadores e voluntários a inferir sobre o seu estado, havendo uma forte

correlação da situação do desastre com o posicionamento numa mapa real; um mapa

melhorado de modo a ser possível de utilizar em operações no terreno, através de

dispositivos modernos, nomeadamente tablets. Esta última ferramenta é fruto de uma

evolução do mapa dinâmico, de modo a ser mais usável em equipamentos Android. Este

trabalho tem por objetivo explicar a concretização e o desenvolvimento das duas

primeiras ferramentas, LOST-OppNet e LOST-Map.

A ferramenta que promove a comunicação de vítimas para voluntários tem o

nome LOST-OppNet. O seu nome deriva de opportunistic networks (redes

oportunistas), que são extensamente utilizadas nesta ferramenta. Este tipo de redes é

adequado para cenários onde os canais de comunicação existentes nesse momento são

intermitentes ou estão inoperacionais. A ferramenta permite que os dispositivos das

vítimas sejam instruídos para atingir dois objetivos principais: recolher informação

diversa sobre a vítima de forma automatizada e independente desta, sempre que

possível, uma vez que a vítima pode não estar disponível para interagir com o

dispositivo; criar um canal de comunicação razoavelmente estável para que os dados

recolhidos das vítimas possam navegar longe o suficiente e assim chegarem a

salvadores e voluntários. Concretamente, é esperado que as mensagens geradas pelos

dispositivos sejam disseminadas pela rede oportunista, até chegarem a um ponto em que

exista ligação à Internet. Consequentemente, estes dados serão enviados para um

serviço online, onde podem ser visualizados pelos voluntários e armazenados de forma

permanente.

Por outro lado, o LOST-Map é uma ferramenta de suporte a voluntários que tem

por objetivo obter os dados previamente recolhidos pelos dispositivos das vítimas e

transformá-los em informação útil para o seu salvamento. Assim, os voluntários têm

acesso a um mapa dinâmico onde, para além de poderem visualizar um mapa atualizado

com a geografia da região, também podem ver a localização das vítimas sobre o terreno,

assim como quaisquer outras informações que tenham chegado com sucesso ao sistema.

Adicionalmente, os voluntários têm acesso a um conjunto de opções integradas no mapa

que lhes permitem personalizar a vista sobre a situação, com a finalidade de poder

destacar certos grupos de vítimas que possam ser considerados prioritários. Por

exemplo, é possível observar o caminho feito por uma vítima ao longo do desastre e

assim tentar encontrar outras vítimas, ou apenas observar a sua evolução. É também

possível analisar vários elementos recolhidos de forma automática pelos equipamentos

das vítimas, e assim tentar inferir sobre o seu estado físico, isto é, se a vítima se

vii

consegue ou não mexer, se tem capacidade para reagir ao dispositivo, etc. Consoante os

critérios escolhidos pelos voluntários, é possível definir uma escala de prioridade,

análoga a um semáforo, para destacar vítimas que pareçam estar em situação de maior

risco.

Em conjunto, estas ferramentas visam proporcionar um sistema de apoio mútuo

entre vítimas e voluntários, dando a ambas as partes a oportunidade de participar nas

operações de salvamento. Utilizando o LOST-OppNet, as vítimas têm a oportunidade de

comunicar textualmente acontecimentos relevantes no terreno de acordo com a sua

visão e perceção. No caso da vítima não se encontrar em condições de transmitir

informação usando a ferramenta, é ainda assim possível recolher dados importantes que

possam levar ao salvamento da mesma, nomeadamente informações sobre a sua

localização geográfica. Por sua vez, ao usar o LOST-Map, os voluntários podem ajudar

em operações de salvamento de acordo com as instruções de salvadores profissionais,

enquanto lhes podem fornecer informações valiosas para o sucesso da operação,

recolhidas diretamente da cena de desastre. Com o auxílio da informação presente no

mapa, podem não só perceber onde se encontram as vítimas, mas também ter acesso a

um conjunto de pistas adicionais que podem ajudar a descobrir melhor o seu paradeiro.

Para além de uma visão geral sobre a situação, os voluntários podem ainda personalizar

a sua vista, de modo a visualizar a cena de desastre de diferentes perspetivas.

Este trabalho pretende dar a conhecer os passos tomados para a concretização e

desenvolvimento das ferramentas supracitadas, assim como mostrar as suas

funcionalidades mais relevantes. Concretamente, são explicadas as decisões relativas ao

desenvolvimento de software, técnicas utilizadas, plataformas de suporte (quando

aplicável) escolhidas ao longo do desenvolvimento de cada uma das ferramentas. De

seguida, são mostrados alguns casos de uso que mostram as ferramentas em ação, com o

propósito de ilustrar o papel de cada uma em determinados contextos. Por fim, foram

realizadas avaliações para cada uma das ferramentas, de modo a aferir se estas cumprem

os requisitos a que foram destinadas e funcionam de acordo com as expectativas. Os

resultados dos estudos indicam que os utilizadores, mesmo sem conhecimento

específico de operações de salvamento, são capazes de utilizá-las.

Palavras-chave: Gestão de Desastres, Resposta a Emergências, Cidadãos Salvadores,

Redes Não-Estruturadas, Comunicação Ponto-a-Ponto

viii

ix

Abstract

Disasters such as those that happened in Haiti, Japan and more recently in

Philippines, often results in instances of isolation, difficulty in rescuing victims, even

with the use of currently available technology. Those technologies were designed

primarily to aid rescuers, leaving victims with a passive role in their rescue. While it is

true that such applications can enhance the performance of rescuing works, with the

help motivated volunteers and even victims there are more chances to execute a

successful rescue. Victims often have local data that may be useful in their rescue, such

as geographical information or health condition status. Then volunteers could find those

victims by following these clues.

The Leading Others through Secure Trails (LOST) project is composed by three

tools designed to help victims and rescuers in post-catastrophe scenarios: LOST-

OppNet, LOST-Map and RescueOppus, being the first two the subject of this work.

LOST-OppNet is a tool design to be included in victims’ devices, such as smartphones

or tablets, and make use of networking capabilities to create a dedicated opportunistic

network. This allows victims to establish a communication channel, allowing them to

send volunteers text messages, along with other indicators, for instance, their

geographical location. On the other hand, LOST-Map is a tool designed for volunteers,

allowing them to see the location of the victims over a real-world map. This map also

allows the volunteers to personalize their view of the disaster scene, with a set of filters

operating on the information received from the victims.

This document describes the engineering process of such tools, their

functionalities and the rationale behind the main design decisions. Then, some studies

are presented to validate both tools and show typical use cases that victims and

volunteers may need in disaster scenarios. Results indicate that both tools are usable,

even by people unfamiliar with rescue operations.

Keywords: Disaster Management, Emergency Response, Citizen Rescuers,

Unstructured Networks, Peer-to-Peer Communication

x

xi

Table of Contents

List of Figures .. xiii

List of Tables ... xv

Chapter 1 Introduction .. 1

1.1 Motivation ... 1

1.2 Objectives .. 3

1.3 Contributions ... 4

1.4 Document structure.. 4

Chapter 2 Related work ... 7

2.1 Tools for rescuers .. 7

2.2 Victim collaboration .. 9

2.3 Unstructured networks ... 11

2.4 Interoperability .. 13

2.5 Summary .. 14

Chapter 3 The LOST project ... 15

Chapter 4 LOST-OppNet: Knowing the victims ... 17

4.1 Background .. 17

4.2 Implementation .. 21

4.3 VictimApp: LOST-OppNet in action .. 33

4.4 Summary .. 35

Chapter 5 LOST-Map: Detecting victims on a dynamic map 37

5.1 Background .. 38

5.2 Implementation .. 40

5.3 Dynamic visualization tool .. 43

5.4 Summary .. 48

Chapter 6 User study: evaluating LOST-Map ... 51

6.1 Apparatus ... 51

6.2 Participants .. 51

xii

6.3 Procedure ... 51

6.4 Measures .. 52

6.5 Results ... 52

6.6 Conclusions ... 55

Chapter 7 User study: evaluating LOST-OppNet ... 57

7.1 Apparatus ... 57

7.2 Participants .. 58

7.3 Procedure ... 58

7.4 Measures .. 59

7.5 Results ... 60

7.6 Conclusions ... 61

Chapter 8 Conclusions ... 63

8.1 Overview ... 63

8.2 Limitations ... 64

8.3 Future work ... 65

Bibliography .. 67

Annex A. LOST-Map webservice details .. 69

Annex B. LOST-Map study tasks .. 77

Annex C. LOST-OppNet study questionnaires .. 83

xiii

List of Figures

Figure 3.1 – LOST project with the tools developed and their conceptual relationship

inside the project. .. 16

Figure 4.1 – Two sample scenarios showing the possible behaviour of a structured

network (at left), and an unstructured network (at right). .. 18

Figure 4.2 – Transition state diagram for WiFi-Opp (Credits: Trifunovic et al. 2011).. 19

Figure 4.3 – LOST-OppNet state transition diagram. Full lines represent default

transitions due timeout while dashed lines represent transitions due external events. ... 23

Figure 4.4 – LOST-OppNet modular architecture. Each component contains a set of

smaller subcomponents highly coupled to their ancestor. .. 24

Figure 4.5 – Example of the actual implementation of message duplicate filter. 29

Figure 4.6 – An external application receiving a notification of a new message arriving

the system, and fetching it from the MessagesProvider. .. 32

Figure 4.7 – VictimApp user interface. On left, current status of LOST-OppNet is

shown. On right, an on-demand message created by the victim is waiting to be sent. .. 34

Figure 5.1 – LOST-Map system architecture. The frontend and aggregator components

are loosely coupled to reduce the dependence on each other. .. 40

Figure 5.2 – Typical screen for LOST-Map interface. ... 44

Figure 5.3 – LOST-Map interface with the (A) balloon, (B) trail, (C) message list, (D)

search and (E) Critical Area functionalities in action... 46

Figure 5.4 – LOST-Map interface after applying a filter. The markers are coloured

according to the chosen scale on the filter settings screen. .. 47

Figure 5.5 – Filter settings screen. It is possible to choose a measure and the colour

range according to a semaphore analogy (from left to right: red, yellow and green). ... 47

Figure 6.1 – AttrackDiff results for LOST-Map as perceived by participants 54

file:///C:/Users/André/Google%20Drive/fcul/LOST/tese/1314_lost_andre-silva.docx%23_Toc399742568
file:///C:/Users/André/Google%20Drive/fcul/LOST/tese/1314_lost_andre-silva.docx%23_Toc399742568
file:///C:/Users/André/Google%20Drive/fcul/LOST/tese/1314_lost_andre-silva.docx%23_Toc399742569
file:///C:/Users/André/Google%20Drive/fcul/LOST/tese/1314_lost_andre-silva.docx%23_Toc399742569
file:///C:/Users/André/Google%20Drive/fcul/LOST/tese/1314_lost_andre-silva.docx%23_Toc399742570
file:///C:/Users/André/Google%20Drive/fcul/LOST/tese/1314_lost_andre-silva.docx%23_Toc399742571
file:///C:/Users/André/Google%20Drive/fcul/LOST/tese/1314_lost_andre-silva.docx%23_Toc399742571
file:///C:/Users/André/Google%20Drive/fcul/LOST/tese/1314_lost_andre-silva.docx%23_Toc399742572
file:///C:/Users/André/Google%20Drive/fcul/LOST/tese/1314_lost_andre-silva.docx%23_Toc399742572
file:///C:/Users/André/Google%20Drive/fcul/LOST/tese/1314_lost_andre-silva.docx%23_Toc399742573
file:///C:/Users/André/Google%20Drive/fcul/LOST/tese/1314_lost_andre-silva.docx%23_Toc399742574
file:///C:/Users/André/Google%20Drive/fcul/LOST/tese/1314_lost_andre-silva.docx%23_Toc399742574
file:///C:/Users/André/Google%20Drive/fcul/LOST/tese/1314_lost_andre-silva.docx%23_Toc399742575
file:///C:/Users/André/Google%20Drive/fcul/LOST/tese/1314_lost_andre-silva.docx%23_Toc399742575
file:///C:/Users/André/Google%20Drive/fcul/LOST/tese/1314_lost_andre-silva.docx%23_Toc399742576
file:///C:/Users/André/Google%20Drive/fcul/LOST/tese/1314_lost_andre-silva.docx%23_Toc399742576
file:///C:/Users/André/Google%20Drive/fcul/LOST/tese/1314_lost_andre-silva.docx%23_Toc399742577
file:///C:/Users/André/Google%20Drive/fcul/LOST/tese/1314_lost_andre-silva.docx%23_Toc399742578
file:///C:/Users/André/Google%20Drive/fcul/LOST/tese/1314_lost_andre-silva.docx%23_Toc399742578
file:///C:/Users/André/Google%20Drive/fcul/LOST/tese/1314_lost_andre-silva.docx%23_Toc399742579
file:///C:/Users/André/Google%20Drive/fcul/LOST/tese/1314_lost_andre-silva.docx%23_Toc399742579
file:///C:/Users/André/Google%20Drive/fcul/LOST/tese/1314_lost_andre-silva.docx%23_Toc399742580
file:///C:/Users/André/Google%20Drive/fcul/LOST/tese/1314_lost_andre-silva.docx%23_Toc399742580
file:///C:/Users/André/Google%20Drive/fcul/LOST/tese/1314_lost_andre-silva.docx%23_Toc399742581

xiv

xv

List of Tables

Table 4.1 – Android Compatibility Definition Document recommendations regarding

sensor support in hardware devices. ... 27

Table 5.1 – Schema of the table responsible for storing the victims’ data. 42

Table 6.1 – Average completion time, average SEQ score and average number of help

requests for each task. ... 53

Table 7.1 – Detailed results for the aspects evaluated in VictimApp............................. 60

file:///C:/Users/André/Google%20Drive/fcul/LOST/tese/1314_lost_andre-silva.docx%23_Toc399742582
file:///C:/Users/André/Google%20Drive/fcul/LOST/tese/1314_lost_andre-silva.docx%23_Toc399742582
file:///C:/Users/André/Google%20Drive/fcul/LOST/tese/1314_lost_andre-silva.docx%23_Toc399742583
file:///C:/Users/André/Google%20Drive/fcul/LOST/tese/1314_lost_andre-silva.docx%23_Toc399742584
file:///C:/Users/André/Google%20Drive/fcul/LOST/tese/1314_lost_andre-silva.docx%23_Toc399742584
file:///C:/Users/André/Google%20Drive/fcul/LOST/tese/1314_lost_andre-silva.docx%23_Toc399742585

xvi

1

Chapter 1

Introduction

Natural disasters can have devastating effects. For instance, the recent typhoon

Haiyan in Philippines destroyed from 70 to 80% of the local infrastructures1. Not only

people became in isolated state, away from their relatives, but also without the

capability of communicating with them using long-distance communication methods

can be affected. This barrier can happen if the infrastructure supporting them is

destroyed, leaving cell phones or Internet unavailable. Therefore, people may have

difficulties in communicating with others to ask for help or locate their relatives.

This work proposes a project called Leading Others through Secure Trails (LOST).

The project comprises three main components. The first component is a communication

tool to be used by victims under disaster scenarios. The tool helps the victims in

affected areas to make others aware of their presence and to send messages to possible

rescuers. It also uses some resources of the devices to passively generate data which can

later be used by others to infer about the victims’ status. The second component is a

visualization tool, allowing volunteers to visualize data generated by victims and

helping rescuers to have a general overview of victims in the disaster scene. The data is

updated in real-time to allow better rescue planning by showing the most recent victim-

generated information and give an overview of tracks. The third component is an

enhanced version of the second. It consists on a map to be deployed on Android

devices, giving users a more native experience. This work will essentially focus on the

development and evaluation of the first two components.

1.1 Motivation

During disasters, people are the key component to a successful rescue. It is possible

to have all the best rescuing equipment and still fail to successfully rescue victims.

People’s knowledge and action are essential to ensure that the rescuing operations are

1 DailyMail: Rescuers battle to reach site levelled by Typhoon Haiyan while city of 35,000 is 80%

underwater – http://www.dailymail.co.uk/news/article-2499851/

2

carried successfully. There are multiple stakeholders during such scenario. On one hand,

rescuers are people specialized in rescuing works and have access to a set of tools to

help them. They are highly organized and previously plan their operations to ensure a

successful rescue. On the other hand, volunteers are willing to help. They can be

victims’ relatives, neighbours or even strangers who are in the field and offer to help.

Volunteers are often untrained and don’t have many resources. However, they are

motivated to rescue people and may be capable of unveiling clues to rescuers by finding

victims on the field. They can also participate in the rescuing works under supervision

of rescuers. Generally, rescuers will not allow untrained people to enter in dangerous

zones, meaning that the volunteers’ scope may be limited. Also, victims are interested

part on being rescued, to be safe and return to their lives. At a first glance, victims are

passive elements during a rescue, just waiting to be saved. However, this is not

necessarily true. Victims are inside of the disaster scene. They can describe the

surroundings, find others and collaborate with them. The problem they find is the lack

of a communication channel with rescuers and volunteers to propagate such useful

information.

Technology can assist people in communicating with others at high distances.

Telephones, cell phones and Internet are just a few examples of long-distance

communication tools. Usually, people carry with them a device that allows them to

communicate with others, namely cell phones. In fact, according to a mobiThinking

study in 20142, there are about 780 million subscriptions of mobile cellular services in

Europe. The same study also gives an estimate that the percentage of cellular

subscriptions per 100 people is 124.7%. This indicates that having a cell phone is very

common in Europe and people are likely to carry them daily. However, in very

destructive disasters, cell towers may become inoperative.

Smartphones are in heavy expansion. Another study by Gartner3 points that the

worldwide smartphone sales surpassed feature cell phone sales in 2013, accounting for

53.6% of every cell phone sold. While feature cell phones typically offer the essential

functions expected in a cell phone, such as making calls or sending messages,

smartphones are capable of providing additional functions to the end user. For instance,

they are capable to connect to other networks, such as Wi-Fi and Bluetooth, both to

public structured networks and point-to-point networks created at the moment. This

increases the chance of finding a suitable communication channel, giving victims

greater chances of being capable to communicate with people rescuing them. Given that

2 Global mobile stats 2014 – http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats/

3 Gartner Says Annual Smartphone Sales Surpassed Sales of Feature Phones for the First Time in

2013 – http://www.gartner.com/newsroom/id/2665715

3

usually people carry a cell phone with them, and the smartphone usage is increasing,

there is an opportunity to develop a tool that is already included in the victim’s device,

ready to be used when necessary. This is important because it is easily accessible by the

victim when needed. Current smartphones also include a large number of sensors, such

as accelerometers, proximity sensors, etc. They offer the possibility to gather raw data

and explore it to extract potentially useful information.

Such information could be used by rescuers and volunteers to plan a better rescuing

operation. Usually, rescue teams use maps to plan their strategy. Although functional,

paper maps have several limitations and may contain incorrect information due

misunderstanding or human error (Gunawan et al. 2009). This may compromise the

whole rescue operation, leading to a waste of resources. Technology can again help to

enhance this form of communication. There are services offering digital maps. For

instance, Google Maps4 supports the visualization of real-world maps using standard

web technologies. It allows searching for a country or even a street name, calculating

routes between multiple user-selected points along many other useful functions. This

component is even flexible enough to address other use cases besides real-world maps.

For instance, Quartermaester5 is an online map tool based on Google Maps that offers

Game of Thrones fans a complete map representation of the series’ fantasy world and

their characters travels. For volunteers and rescuers, such map could be useful by

having a single view over the disaster scene, always updated and accurate according to

data gathered from the one important source: victims who are on the field. Due the

versatility of Google Maps, it is possible to create a visualization tool based on

geographical locations, built using the standard web technologies. This is useful to

provide a standard real-world map with an overlay containing victim locations and

associated data gathered by the victims’ tool. This also ensures that someone willing to

see the location of victims can access the map using a standard web browser, making it

accessible by a laptop computer or even a tablet.

The combination of these challenges and opportunities opened multiple proposals

in the literature to include Information Technology on rescuing works. This work in

particular presents a prototype solution to solve the problems mentioned and give

volunteers a little more power to help in rescuing operations.

1.2 Objectives

The main objective of LOST project is to create a set of tools to help rescuers and

victims to communicate. These tools are directed for people without previous

4 Google Maps – http://maps.google.com
5 Interactive Game of Thrones Map with Spoiler Control – http://quartermaester.info/

4

knowledge on rescuing, allowing them to increase the chances of a successful rescue

operation. Specifically, the tools should be able to help victims, by allowing them to

advertise their presence, and to help rescuers, by pinpointing victims on a map and

allow understanding if they are safe. They aim to provide support to people during

disaster scenarios, by complementing the actual mechanisms to save people, and giving

volunteers and rescuers more information to increase the probability of a successful

rescue.

1.3 Contributions

This work contributes with a system that allows even inexperienced volunteers to

locate victims and infer about their condition based on data gathered automatically.

Specifically, the system contains a tool for victims, allowing them to ask for help and

send small clues to advertise their presence, and a tool for volunteers, allowing them to

follow the clues, identify and locate victims on a local map.

Additionally, two user studies were conducted to evaluate LOST tools and their

results published in this work, along with the methodology to concretize them. The first

study resulted in a publication to an international conference:

 André Silva, Diogo Marques, Carlos Duarte, Maria Ana Baptista and Luís Carriço,

2014. LOST-Map: a victim sourced rescue map of disaster areas. Accepted for

publishing in CRIWG’14.

1.4 Document structure

This document is structured following a bottom-up approach, starting by explaining

LOST-OppNet, the network component used by victims’ application and then LOST-

Map, the volunteers’ visualization tool and data aggregator.

 Chapter 2 presents a brief analysis of the state-of-art regarding disaster management

using Information Technology, with special attention to mobile and easy-to-deploy

tools;

 Chapter 3 briefly explains the LOST project, showing the component integration

and making an overview about each component;

 Chapter 4 explains the details of LOST-OppNet, in a bottom-up approach. An

introductory context is given to allow the understanding of how the core tool works

and the reasons to adopt the idea. Then the software architecture is explained to

allow the understanding of concrete implementation details and the reasons that led

to the development of a reusable component. To proof that the prototype works, a

small proof-of-concept Android application to support victims under a disaster

scenario is also presented;

5

 Chapter 5 explains the development and actual status of LOST-Map, its relation to

LOST-OppNet and how the data is passed between these components. These

components are presented individually and their relationship explained. A set of

useful functionalities is also explained, to unveil the full potential of LOST-Map

regarding victims detection on a real-world map.

The following chapters present the studies done to understand the viability of the

tools developed and their usage with potential users:

 Chapter 6 presents the LOST-Map validation study from a human-computer

interaction perspective, presenting the procedure methods and the results of the

study;

 Chapter 7 contains a validation study for LOST-OppNet, using the proof-of-concept

Android application in a simulated disaster scenario. The study shows the procedure

and results regarding tool usage.

The Chapter 8 concludes the document, summarizing the work that was done and

possible future work perspectives for the LOST project and its tools.

6

7

Chapter 2

Related work

Victim rescuing using Information Technology (IT) is a focused research topic in

the literature. There are already some proposals of systems to help victims in disaster

situations and provide support to rescue teams. The following sections are an overview

of the current state-of-art research about systems with similar purpose and contributions

that were fundamental for building the LOST project.

2.1 Tools for rescuers

Rescuing works have a lot of potential to take advantage of IT. From automating

common tasks to providing long-distance communication, IT integration in rescuing

operations may benefit rescuers.

Wu et al. (2011) proposed a centralized communication system to provide

collaboration between rescuers. The idea is to provide a shared map containing photos

taken by rescuers. According to the study, a photo can reduce communication

interferences such as misinterpretation or wrong description of events. Photos make

possible for rescuers to have a shared view of the incident. A rescuer willing to

communicate with others could take a photo of the scenario and then append a textual

description of the incident. Eventual follow-ups to allow better understanding of the

scenario can be done in a chat window. Command centre can then design a plan based

on information gathered by field rescuers. The plan would be visible on the shared map,

allowing all rescuers to follow it. All data is stored in a centralized webserver, from

which rescuers on the field should connect to receive new information and participate

on the public chat window. This contribution provides a simple approach to solve

communication problems faced by rescuers in the field, by reducing poorer forms of

communication that alone would cause misinterpretations and wrong information to

spread. The LOST system tries to simplify the gather of information, making it as

automatic as possible.

8

COORDINATORS (Wagner et al. 2004) is another system that supports rescuers’

communication, specifically firefighters. It comprises a geo-localization module and a

reasoning module. The first allows detection and deployment planning of human

resources on the emergency scenario, in order to manage the firefighters. Each point on

the map is a team, with an associated name, such as “Team 1”. These teams can be

coordinated by a mobile command centre using the same application. The incident

commander can create a new task on the reasoning engine to be sent to the firefighters,

according to the initial knowledge of the situation. After that, firefighters could classify

the fire as high risk and then require another task to properly deal with the problems

faced. The idea of the reasoning engine is to offer solutions for the current situation as

information is being gathered from the scene, allowing the management of actual

human and material resources present in the scenario. The communication can be done

via ad-hoc networks, minimizing the dependence of a structured network to support the

communication. COORDINATORS solves the issue of long-distance communication

and coordination of rescue teams, namely firefighters. LOST is a system which splits its

efforts for both victims and volunteers. It does not have dedicated features for rescuers,

for instance, a coordination component. However, the core concept or distance

communication using ad-hoc networks is heavily used in the victims’ component.

On a similar approach, a system called WIISARD (Chipara et al. 2012). It consists

on a set of tools to be used by rescue teams. Teams that on the disaster field start by

identifying victims using a smartphone application, filling some basic information, such

as name or the location where the victim was found. Triage teams receive this

information and use it in their procedures. Internally, the network used by WIISARD is

highly dynamic, without a centralized point where the points connect to. Instead, the

nodes create a temporary mesh to connect with others. The information gathered by the

team in the field can be obtained when the element reaches the location of the triage

team (command centre or cold zone), or can be relayed among the rescue elements via

wireless, until it reaches the triage centre. Triage team has equipment with greater

computational power, such as laptop computers, in order to process the high amount of

information received quickly. LOST has similar approach to WIISARD, however LOST

is more oriented to unknown environments. With LOST, it is possible to search for

victims by following the clues that they leave. WIISARD seems to be more

information-gathering oriented, by collecting information quickly as victims arrive to

the triage centre. While WIISARD can be deployed in a small area with the help of a

mesh network, LOST can run fully decentralized, using a store-carry-forward model.

That means nodes can be disconnected at some point to connect to others that are more

far away, and cannot connect to the rescuers network directly.

9

Another proposal of an emergency medical response system is presented in Hashmi

et al. (2005). This system in particular relies on sensors that are deployed with the

victims when rescuers on field are rescuing them. These sensors are motes equipped

with a pulse oximetry sensor, a GPS receiver, micro-processor, and a module for storing

data and transmitting it. This partly automates the victims’ monitoring by sending data

directly to the local command centre. Rescuers are equipped with a Personal Digital

Assistant (PDA) to have feedback about victims on the field by connecting to the local

command centre and exchange the most recent situational awareness data. The

connection to the local command centre is established through a webservice.

Connection from local command centre to the Internet is established via satellite or

cellular links, thus enabling information to be sent to remote command centres. This

system allows rescuers to leverage their monitoring tasks and situation update efforts by

relying them to technology. With the PDA, rescuers can evaluate victims’ status with

small effort and obtain the most recent status regarding the overall situation. Motes are

cheap and low-resource devices that have enough flexibility to gather and disseminate

information, being ideal for scenarios where a large number of equipment may be

necessary. LOST has the advantage of having access to the information to the victims.

That is, victims’ devices running LOST are already prepared to announce information to

volunteers. While victims who are isolated still need to exchange their information with

volunteers when they are in range, their devices still announce their presence. This

means volunteers do not necessarily need to have visual contact with the victims to find

them.

2.2 Victim collaboration

Victim collaboration is sometimes decisive in their own rescue. Their proactivity

allows forming small groups and promoting safety. In fact, it was observed by Vieweg

et al. (2010) that during Oklahoma Grassfires of April 2009 and Red River Floods

during March and April of same year, affected people used social networks to

communicate. Example types of communication were about the environment status,

geolocation of victims and exit routes found. An interesting fact about geolocation is the

high percentage of users using it: 78% of victims of Oklahoma Grassfires and 86% of

victims on Red Rived Floods used some sort of geolocation data in their text messages,

such as city name or the street address. This shows that victims often want to provide

their own location, or even a location for critical events happening near them. Location

sharing may have multiple purposes, such as keeping victims away from a dangerous

zone, defining safe exit paths or advertising their presence to possible rescuers. Another

interesting fact is the possibility of applying a categorization scheme to the

conversations taken during a disaster. While smaller categories are often dependent of

10

disaster types, it is still possible to successfully apply generic categories such as

“Warning” or “Road Conditions” to message and then filter messages according a

certain criteria. Qu et al. (2011) conducted a similar study during the Yushu Earthquake

in 2010. Messages from an online social network were analysed and successfully

assigned to a limited set of generic categories. People often advertised their need for

help or advertised their availability to help others on a certain role, such as doctors or

translators. These messages were also used to build a local lost-and-found directory of

people. With LOST, victims have the ability of communicate with volunteers, using text

messages. While the messages are not categorized within the system, some of them are

replaced by information gathered automatically. For instance, geographical location is

automatically attached to victims’ messages when possible. This helps victims to

advertise their presence, without using descriptive text, which could be problematic to

interpret, as seen before.

Another system where victims can have a proactive role on rescuing is

TravelThrough, presented by Gunawan et al. (2012). It is a smartphone application

aimed to provide communication and collaboration between victims and rescuers. With

TravelThrough, victims can help rescuers in the creation of a safe path to exit an

affected area. While on the field, victims can report roads blocked or obstructed, by

filling a report which can contain text or pictures taken with the smartphone. The

application allows victims to see a map shared with the rescue team. The rescue team

can gather the information given by victims and, once confirmed, make it public and

design a path on the map, allowing victims to exit the affected area safely. This system

demonstrates a close cooperation between victims and rescuers to create an incident

map. However, some disasters could be very destructive, leaving long-distance

communication methods unavailable. For large disaster areas, this system may require a

stable connection from victims to rescuers. LOST does not rely in such communication

scheme. For instance, LOST uses unstructured networks to gather the information and

spread it as it becomes available. This allows volunteers to split in small groups and

search for victims in different areas within the disaster scene. Rather than creating a

global view of the incident, volunteers can direct their efforts to a smaller area, and

allow some proactivity during the rescue.

Typical smartphone features may also be explored in order to promote means of

rescuing victims. Al-akkad et al. (2014) developed Help Beacons, a project that

explores the use of Wi-Fi Service Set Identifier (SSID) to exchange messages between

victims and first responders. Essentially, there are two Android applications used: a

Victim App, used by victims to advertise their need for help, by writing a custom

message or choosing an existing one; a Responder App that allows first responders to

see nearby victim-generated SSIDs and connect to them, in order to exchange

11

information. The SSIDs are structured into a special format to allow the Responder App

from distinguish between regular access points from the ones generated by victims. This

contribution shows that nowadays devices and already existing technology can be

widely explored to extend beyond their typical purpose. SSIDs are part of the Wi-Fi

standard and thus available in all devices supporting Wi-Fi. This allows victims to

exchange information between them, promoting their safety as a group with the help of

devices that they probably are already carrying. The strong point of this system is the

low need of dedicated resources. However, creating a new message (that is changing the

SSID) implies losing the previous one. LOST promotes retaining as much information

as possible. With past and current information, it may be possible to establish a route

and try to guess the next victims’ steps, if no further information is given from them.

Moreover, these messages are propagated in LOST from one victim to other. This

means that a victim does not necessarily need to be in range of the volunteer to be

discovered, assuming that the victim was previously in contact with others, and the

respective information was propagated later.

2.3 Unstructured networks

Unstructured networks are also frequently cited in the literature. They represent an

alternative communication model in situations where deploying a structured network

would not be feasible. Typical scenarios are disaster areas, where the physical structures

may not have the necessary conditions to host a structured network. Another concern is

time: giving the fact that people may need help, deploying a structured network could

take a long time to conclude. Since unstructured networks are usually easy to deploy

and are often self-organized, they offer the possibility to create a dedicated

communication channel with less effort.

There are several proposals of unstructured networks aiming for communication

with others. Belblidia et al. (2011) presents PACS as a network application that uses an

opportunistic network scheme. The objective is to disseminate a large amount of data,

such as High Definition videos or simply large files, over a network. Due the

unstructured nature of opportunistic networks and the possible low processing and

storage capacity of nodes, distributing a single large file over the network and expecting

that it reaches the destination may not be feasible in every scenario. Assuming that

nodes have low bandwidth capabilities, this may lead to an unsuccessful file transfer.

Also, this prevents the creation of a reliable and stable communication channel. The

concept of PACS is to split the file in different pieces, so they can be distributed over

the network. Results presented by PACS research suggest that the order of content

dissemination is also important. For instance, the order of propagation may have

different results on content availability. Propagation of sequential pieces of data may

12

lead to an incomplete file over the network. These results suggest that opportunistic

networks are highly adaptable to the environments, but have some degree of

unreliability. It is essential to ensure that important information is retained by nodes in

the network and spread to other in order to make it highly available. Sammarco et al.

(2012) presented a prototype named PePit that implements PACS as an Android mobile

application to allow the dissemination of large files using a peer-to-peer network. PePit

allows sending parts of a picture to an ad-hoc network, and receivers can exchange

those parts in order to get the full picture. The application also contains a graphical

interface, where a user can see the progress, how many parts the device received so far,

and a preview of the image, when all parts are present on the device. This study helps to

understand that while opportunistic networks are useful to propagate data, there are

some constraints to have in account. For instance, pieces of information can never be

propagated in the network. In the case of LOST, messages are constantly propagated

until they achieve a secure place where they are stored and available to volunteers. This

means that all efforts are centred in the idea of every node in the network having the

complete set of the information disseminated. While this requires a large amount of

storage to save high volume of information, it allows a single victim to be able to

propagate a large part of the victims’ network information: a volunteer could find

several victims, by only needing to reach to one.

Opportunistic networks are also cited in studies related to emergency

communication scenarios. A device-to-device communication system is presented by

Nishiyama et al. (2014), aiming to provide a communication channel during disaster

scenarios. The network operation scheme is opportunistic, toggling between the use of a

Mobile Ad-hoc Network (MANET) approach and a Delay-Tolerant Network (DTN)

approach. Changing between these two approaches improves the nodes’ availability and

dissemination under different scenarios. For instance, when an application running on a

smartphone detects movement through the accelerometer sensor, a DTN is used instead

of a MANET because while the node is moving, there are less probability of

successfully connect to a wireless network. Distance between nodes is increased,

decreasing the wireless signal strength, and thus the connection viability. Due this lack

of connectivity, the node should store the current data and try to send it to other nodes

nearby which it can connect to. This technique is called store-carry-forward. If the node

is likely to be stationary, and have a reasonable amount of power, such as battery, then

its operation enters in MANET mode, actively broadcasting its presence and sending

data to the nearest nodes. This combination of techniques is useful to increase the

reliability of communication channel. Instead of relying in a single connection method,

toggling between multiple methods helps the technology to adapt itself to the

environment, achieving a higher degree of connectivity and data dissemination.

13

Another opportunistic network allowing victims of a disaster to create a connection

with others was proposed by Ramesh et al. (2012). The idea is to disseminate victims’

information which may lead to their rescue. These connections rely on Bluetooth in

order to propagate the messages. Victims can send a personalized message, along with a

phone number, an identification string and geolocation data. The messages are

propagated over the network, and when reaching a node having cellular connection to a

mobile network provider, they are sent to destinations, such as an emergency command

centre or even relatives who are outside the disaster.

Opportunistic networks are fundamental to establish a communication channel

where physical barriers and distance between victims and volunteers may be present.

While being independent of a well-known structure, opportunistic networks are also

capable of adapting themselves to external conditions, such as movement of number of

neighbours, in order to achieve the most efficient communication possible, attending to

the resources available in the node. This kind of networks is the core concept of the

LOST communication from victims to rescuers. It does not require a dedicated

infrastructure, making it possible to deploy in many disaster scenarios.

2.4 Interoperability

Using a common technology inside a project is an approach to promote higher

compatibility within different internal systems or modules. However, this scenario is not

always feasible. For instance, systems with a high level of heterogeneity may not be

directly compatible with each other. Nowadays, these systems are very common. From

consumer electronics to enterprise-level solutions, heterogeneous systems are a reality.

In spite of efforts to create standards that promote compatibility between heterogeneous

devices, sometimes an additional platform to promote communication is needed. These

platforms are called middlewares. One specialized type of middleware to web

applications is the webservice. Webservices allows clients using Hypertext Transfer

Protocol (HTTP) and its derivatives to exchange information and call methods on

remote platforms in order to get results for more complex operations.

The use of webservices may be deployed in emergency scenarios in order to

transfer the need of computational power from the devices on the disaster to dedicated

devices located somewhere with adequate conditions. For instance, the emergency

medical response system based on sensors presented in section 2.1 by Hashmi et al.

(2005) uses a webservice to allow communication between the rescuers’ PDAs and the

local command centre. By using a webservice, the system can ensure compatibility with

heterogeneous devices and promotes data openness, for integration with external

14

systems. This example demonstrates that webservices are able to couple with

heterogeneity and allow future systems to be integrated with the current one easily.

LOST system takes advantage of webservices to create a connection between tools

with different technologies. This allows the tools to exchange data in a common format

and simplify the retrieval and storage of data.

2.5 Summary

This chapter offers an overview of the state-of-art about victim rescuing using

information technology. Some effort was already done and some lessons may be learnt

from these studies. One of these lessons is that infrastructure may fail. In greater

disasters, the structure supporting communications may become unavailable. A scenario

like this would require an alternative communication channel to be established on the

disaster scene. Opportunistic networks are suitable for this kind of scenarios, due their

great tolerance to changes in the network elements. For instance, if a node is

communicating with other, if by some reason that communication fails, the sender node

would simply look for others in order to transmit the message and disseminate it. For

this reason, opportunistic networks are widely used in LOST.

On the other hand, there are more stakeholders in a rescuing operation besides

official rescuers. Neighbors, relatives of victims or people on the surroundings make

possible volunteers to help rescuers finding victims. They are motivated and often know

the local area. However, they don’t know where victims are. In turn, victims are inside

the disaster and may accurately describe the situation. However, there are not able to

communicate with rescuers or volunteers. The main goal of LOST is to solve this

problem, by establishing a communication channel that allows victims to advertise their

presence and allows volunteers to detect those victims using a user-friendly tool.

15

Chapter 3

The LOST project

This chapter aims to give an overview about the Leading Others through Secure

Trails (LOST) project. The project goal is to build a set of tools allowing victims to

advertise their location and ask for help, while also aiding volunteers in rescuing these

victims, in an after-catastrophe scenario. The tools should be capable of providing

useful and appropriate mechanisms allowing victims to advertise their presence and exit

the scene safely, and allow volunteers or even official rescuers to detect victims who

may still be present on the disaster field.

These tools should, however, consider additional challenges. In previous disaster

scenes, such as typhoon Haiyan in Philippines (2013) or the earthquake and tsunami in

Japan (2011), the effects were highly destructive. This may lead to infrastructure

disruption thus affecting standard communication systems, such as cellular networks or

public Wi-Fi. In such scenario, an emergency communication system should be

expected to adapt itself to the actual conditions and intelligently change its

communication strategy in order to promote the best communication channel possible

given the current conditions. Furthermore, these tools should be capable of being used

in off-the-shelf devices, such as laptop computers, smartphones or tablets. This also

imposes other limitations. Such devices frequently have a low quantity of resources

available, meaning that any tool running on these devices should be aware of the battery

impact and limited computational power.

The idea is to use the already available technology and introduce it into rescuing

operations, thus increasing their success. It should not, in any case, replace rescuing

knowledge or interfere with it. On an ideal scenario, volunteers and rescuers should take

the best decisions according to their knowledge, while LOST tools give them additional

information to support those decisions.

An initial set of tools was developed to implement some of these requirements.

Actually, LOST project comprises three tools designed for victims and volunteers.

While being standalone applications, they were developed to work together and

16

communicate with others when necessary. Figure 3.1 summarizes the actual LOST

project tools and their relationship. Each tool is also briefly described below.

LOST-OppNet. Victims should be equipped with a tool that allows them to

advertise their presence without requiring user intervention. This ensures that victims

with a smartphone are still capable of telling others the incident location regardless their

condition. LOST-OppNet promotes an alternative network environment based on

opportunistic networks to provide a communication channel along an intermittent or

inexistent infrastructure. Chapter 4 thoroughly presents the LOST-OppNet tool.

LOST-Map. Maps help volunteers to understand the zone and the disaster impact.

However, static maps do not allow further investigation about people present in the

scene. LOST-Map is a dynamic map that allows viewing a real-world map with an

additional overlay containing information about victims. LOST-Map also comprises a

persistent storage mechanism to safely store victims’ data and allow its exploration.

Chapter 5 explains how LOST-Map works and shows features that make it useful to

rescuing operations.

RescueOppus. An interface implementation of LOST-Map was created to be

included in a native Android application, exploring the full potential of these devices,

namely tablets. It contains part of the features offered by LOST-Map interface and other

enhancements. It was externally developed by other members of the LOST project and

included in the diagram for completeness.

LOST-OppNet and LOST-Map are the focus of this work. They are described in

detail and their integration explained. Additionally, studies were conducted to assess

their effectiveness in simulated disaster scenarios.

Figure 3.1 – LOST project with the tools developed and their conceptual

relationship inside the project.

17

Chapter 4

LOST-OppNet: Knowing the victims

This chapter presents in detail the LOST-OppNet, a reusable software component

to allow the detection of victims by gathering data that may be useful for inferring about

their location and condition. This component creates a temporary wireless network

connection to share data with other victims who also may be running an application

based on LOST-OppNet. An example of an application designed for victims using this

component will also be presented as a proof-of-concept in this chapter.

4.1 Background

Wireless networks are highways to several types of communication systems.

Examples of these systems are radio, Wi-Fi, cellular connections, among others.

Modern systems allow not only typical voice communication, but also the exchange of

digital information at high speeds. These networks are usually physically structured

according to previously planned deployment of access points in order to maximize the

signal availability to the desired area. While being reliable for everyday use, structured

networks are often unsuitable to use during disasters. For instance, natural disasters may

destroy towers that physically support the wireless network access points. This leads to

a failure in the structured network, thus becoming unreliable or even unusable.

On the other hand, unstructured networks don’t rely on a default deployment and

are more flexible for environment changes. For example, an unstructured network may

be deployed with the objective of being adaptable to a disaster scenario. Instead of

having wireless access points in well-known locations, a set of devices capable of

providing an ad-hoc network for a small range could be distributed among the affected

area, thus offering a reasonable information exchange mechanism.

Opportunistic networks are a specialized type of unstructured networks. Besides

the unstructured nature, nodes on these types of network usually adapt themselves to the

environment conditions, and choose their connections opportunistically, according to

certain criteria. For instance, a node could intelligently connect to its neighbours when

18

the access point connection is unavailable. Figure 4.1 shows a scenario where this

actually happens. On the left, a structured Wi-Fi network was deployed in a building

floor, with two access points, one at north and other at south, delivering optimal

wireless range. During a disaster, the north access point gets broken due physical

damage on the wall supporting it. Nearby nodes are disconnected from the network

because they are out of range. The south access point is still working and providing

network connection to nodes in range. On right, the exactly same scenario for the

structured Wi-Fi network happens, with the broken north access point and the still

functional south access point. However, nodes opportunistically choose their routes. For

instance, node A prefers to connect to its neighbour instead of the access point because

of the higher wireless signal strength offered the adjacent node. Node B extends the

network to the north side of the building, allowing nodes to connect to it. The role of

Node B is to act as a bridge between the south access point and the nodes on the north.

The use of an opportunistic network may bring some of the already described

advantages. There are research efforts made towards opportunistic networks and

scenarios where they can complement or even replace structured networks. WiFi-Opp

(Trifunovic et al. 2011) is a setup relying on opportunistic networks. It consists on a

network model that actively changes the strategy to establish a communication channel

with other nodes. For instance, WiFi-Opp relies on hotspot functionality present in

Figure 4.1 – Two sample scenarios showing the possible behaviour of a structured

network (at left), and an unstructured network (at right).

19

nowadays smartphones to allow the creation of a communication channel between

devices. The proposal suggests the implementation of four states to achieve the

communication: Scanning, Beaconing, Station and Providing.

Each of these states has a specific role. Scanning mode is responsible for finding

suitable hotspots for connecting to. Nodes in this mode should scan the surroundings for

available hotspots in order to connect and be able to exchange information with others.

Beaconing mode is the state that allows nodes in Scanning mode to connect, that is,

these nodes are acting as hotspots. It allows multiple clients to connect, thus allowing

devices to communicate. When a node in Scanning mode connects successfully to a

node in Beaconing mode, the first node changes to Station mode while the second enters

in Providing mode. Nodes in Station mode are connected to a network and have access

to its available resources. Providing mode indicates that a node is offering network

communication to other nodes connected to it. Transitions are usually done via timers

with a small distortion in order to avoid similar transition times. Figure 4.2 summarizes

all the states and respective transitions present in WiFi-Opp.

The work also presents a study confronting a static WiFi-Opp method and set of

flexible methods. In static method, nodes in Scanning mode search for nodes in

Beaconing mode as usual. However, when a Beaconing node enters in Providing mode

it only changes to Scanning mode if it has no clients connected. Clients remain

connected once in Station mode. Flexible methods are similar, but they allow nodes in

Station or Providing modes to disconnect from each other. This allows nodes in Station

mode to disconnect from the actual hotspot and search for another, while also allowing

nodes in Providing mode to disconnect its clients and enter in Scanning mode to search

for other hotspots. Flexible methods may allow more expansion for network. While in

Figure 4.2 – Transition state diagram for WiFi-Opp (Credits: Trifunovic et al. 2011).

20

static method nodes may form small clusters with the same nearby nodes, flexible

methods may allow nodes to connect to other hotspots, making possible the exchange of

information with nodes besides their neighbourhood.

Studies regarding the optimal amount of time to stay in a given mode were also

conducted. These studies confront the WiFi-Opp approach with the Ad-hoc wireless

mode in terms of content dissemination. The first conclusion is that network

performance is almost independent of the time amount a node remains in Scanning

mode. This allows nodes to actively scan for hotspots without compromising the

network significantly. On the other hand, according to the second conclusion, increasing

the time a node stays in Beaconing mode has negative impact to the network

performance in terms of dissemination. The reason why it happens has to do with the

number of hotspots available near each other. Recalling that hotspots cannot

communicate directly with other hotspots, this would lead to an area without a chance

of creating communication channels if beaconing time is too long.

Battery consumption was also subject of study. Because this communication

strategy may be deployed in emergency scenarios, victims carrying smartphones may

desire that the equipment have a reasonable amount of energy in order to make a phone

call or send a text message if cellular network is available again. This is also true for the

opportunistic network. If a critical node runs out of battery, it may dictate the whole

network dissemination efficiency. Three HTC Nexus One6 devices running Android

2.3.4 were used to understand power consumption. Conclusions were once again

dependent on amount of time each node spends on a given mode. Scanning time was

concluded to be the less battery consuming state. Due this and the previous conclusions

regarding network performance being independent of Scanning time, it is possible to

perceive that a long Scanning time can have positive effect on the opportunistic

network. Nodes can scan for hotspots during long periods of time and then having more

chances of connecting to a working hotspot. On the other hand, increasing Beaconing

time leads to more battery consumption. As increasing Beaconing time does not

increase performance gains on network, it can be concluded that Beaconing time should

be kept to a minimum to avoid additional battery waste while promoting

communication for nearby nodes.

WiFi-Opp is an important research effort. It shows that opportunistic networks are

feasible in nowadays devices and more importantly, their functions can be integrated for

real-world needs. LOST-OppNet takes advantage of the opportunistic networks

6 HTC Nexus One Specifications – http:// phonearena.com/phones/HTC-Nexus-One_id4512

21

behaviour by using a customized WiFi-Opp implementation in order to provide message

exchange with devices in an opportunistic network created with victims’ smartphones.

4.2 Implementation

LOST-OppNet is a customized implementation of WiFi-Opp presented in the

previous section. Besides the opportunistic network component and state transition

proposed by WiFi-Opp, LOST-OppNet extends that work to include features that may

help to detect victims and allow inferring about their condition. This includes a set of

sensors that allow data gathering and a suitable message exchange format.

This section presents in detail the development start point of LOST-OppNet,

extensions made to the original WiFi-Opp implementation, the actual software

architecture and a description of features that make LOST-OppNet suitable for rescue

operations.

 Start point and expansion 4.2.1

The start point for LOST-OppNet was based on an already existing prototype of

WiFi-Opp. Oppus7 implemented the four machine states proposed by WiFi-Opp and

allowed basic communication with nodes. When two nodes were successfully

connected, they received a basic hardcoded string, such as “I’m alive”. Oppus also have

a good integration with Android devices, allowing to setup the timers for transitions

between states, such as Scanning, Beaconing, Station or Providing. A simple graphical

user interface was also developed in Oppus to allow the comprehension of the actual

network status, machine state transitions and messages exchanged.

While being a suitable prototype to present a proof-of-concept regarding the WiFi-

Opp implementation, it had some barriers that prevented its immediate use. The first

barrier was related to the message format. The hardcoded string was appropriate to

show that the prototype works. However, it was non-customizable message, serving for

the solely purpose of allowing devices to say “I’m here” without any useful additional

information. Another problem in the implementation of the machine state mechanism

was detected. The implementation was problematic due a small mistake on the software

design. Machine state transitions were called recursively. Because the machine state

was continuously looping through states ad aeternum, this led to excessive Java

recursive calls and premature execution termination. This behaviour was only seen

when the prototype was executing during a couple of hours using 30 seconds to each

state. On the other hand, Oppus was thoroughly documented and implemented using an

7 Oppus on Github – https://github.com/diogomarques/oppus/tree/ee9be9b20f

22

interface-based programming approach. These characteristics were especially useful

when new transitions states were developed and integrated. Other components were also

extended easily using the same approach.

In LOST-OppNet, the mentioned problems were corrected and new features

integrated. The actual implementation was developed using a similar architecture. The

message format was changed to a semantically richer one, allowing carrying more

useful data between nodes. Messages are now disseminated using a store-carry-forward

mechanism, in order to store the messages they receive, and disseminate them when

establishing new connections with other nodes later. State transition was also corrected

and tested to ensure correct operation for at least a couple of hours, while theoretically

being capable of running until device runs out of battery. Moreover, a range of new

features was integrated in LOST-OppNet: a couple of new state transitions were adapted

to allow integration with the an external webservice; a set of sensors was developed and

integrated in the actual implementation to allow getting the geolocation of the device

and allow inferring about the surrounding environment; a new message management

model was developed to allow more controlled message exchange, preventing duplicate

dissemination and storing data received persistently; a couple of logging tools to allow

the gathering of statistics about state transitions and messages exchange for future

review. LOST-OppNet was also ported to an Android service, in order to allow

background execution of the app without requiring user intervention.

To develop LOST-OppNet, the Android Developer Tools (ADT) software suite

was used, with conjunction of four Android smartphones, being three of them Samsung

Galaxy Mini and the other a Samsung Galaxy Ace, all running Android 2.2.

 State Machine 4.2.2

The State Machine suggested in WiFi-Opp was augmented to include

communication with a webservice, allowing messages from victims to be persistently

stored out of the opportunistic network. This expansion was needed in order to push

data from victims directly to an aggregator, making it available to possible rescuers. The

actual implementation of LOST-OppNet has five conceptual machine states. Four of

these states are from the actual implementation of WiFi-Opp, already included in Oppus

and only were changed to include minor improvements and integration with new

features. The newer state was created in conjunction with the makers of RescueOppus.

The purpose of this state is to check if there is an Internet connection available, and if it

is the case, send all the information gathered so far by the device to the webservice.

Figure 4.3 shows a simplified diagram with the transitions between states and the

required criteria to allow the change. By default, every node starts in the Scanning state.

23

Each transition is one-way only and made when all conditions apply. Some transitions

are always made at a certain timeout attribute of each state. Full lines represent the

default transition when timeout is reached, while dashed lines represent possible

premature transitions due changes in a state. Premature transitions are common in states

that wait for response of an external source. For example, when a node in Scanning state

finds an access point to connect, it does not need to wait for its timeout, and can change

to Station state on successful connection to other node.

 Software architecture 4.2.3

LOST-OppNet is an Android application based on the Oppus architecture. Due its

modular architecture, it is possible to split the software into several small components.

Oppus includes a centralized component called Environment. This component is

responsible for initializing the remaining components and accesses their functions. Each

of these components may also have subcomponents, responsible for a small and well-

known task. Figure 4.4 summarizes the actual LOST-OppNet architecture. Each of the

components is thoroughly described below.

State Machine. The State Machine allows transitions between the different states

proposed by WiFi-Opp and the additional states introduced by LOST-OppNet. Each of

the states has a specific role. The transition from one state to another is only done when

the state meets certain criteria or when the timer reaches the time limit defined for the

current state. There is also a special state called Stop that stops the execution of the state

Figure 4.3 – LOST-OppNet state transition diagram. Full lines represent default

transitions due timeout while dashed lines represent transitions due external events.

24

machine (not present in the Figure 4.3). This state is only reached when explicitly

requested. For instance, it could be a button on a graphical interface labelled “Stop

machine”, allowing LOST-OppNet to stop its execution gracefully, and freeing any

used resources, such as any used device sensors.

Logging. Text logs may be useful for debugging or future analysis of a specific

run. There are two subcomponents of Logging component: Text Logger is a log written

on a human-readable text file inside the Android device, containing information about

state transitions, messages received and other useful information that a developer

working with LOST-OppNet may find useful to log; Message Dump also stores in a text

file all messages received, encoded in a Comma Separated Values format. Message

Dump was especially useful for manual data insertion in other tools, such as LOST-

Map. In the actual implementation, both of these subcomponents are disabled, although

the Logging component is still present and available to developers.

Sensor Group. Android smartphones usually have a variety of sensors available to

be used by application developers. LOST-OppNet uses four types of sensors: Location

sensor to retrieve the device’s current geolocation; Movements to detect when the user

is walking or operating with the smartphone; Screen activity to understand if the user is

interacting with the smartphone after an idle period; Battery Monitor to watch the

battery usage and current charge level. Section 4.2.4 explains in detail the sensor usage

and the data gathered.

Figure 4.4 – LOST-OppNet modular architecture. Each component contains a set of

smaller subcomponents highly coupled to their ancestor.

25

Message Handling. Messages play a crucial role in the current implementation of

LOST-OppNet. With messages, it is possible to exchange information between nodes.

For instance, a customized text message sent with a LOST-OppNet powered Android

application would carry the message along data gathered automatically from sensors.

Multiple subcomponents allow messages to be handled easily: Sending Queue controls

the message flux to the network, filtering out duplicate incoming messages and avoiding

resending them; Message Formatter allows converting the message to another human

readable representation of the data, such as Comma Separated Values or to JavaScript

Object Notation (JSON) format to send messages to an external webservice; Persistent

Storage components stores the received messages on the device for future analysis or

even for recovery from a previous application abnormal termination. Message Creation

is not a subcomponent per se. Messages are created directly in the Environment with a

special Java method that gathers information of all sensors and put them on the

message. However, since it plays a crucial role on the Message Handling, it is included

on the diagram for completeness.

Preferences. Android has a mechanism that allows storing user preferences on a

protected location, making them impossible to edit manually for the average user.

Preferences uses this mechanism by implementing a specialized version of Preferences,

called Android Preferences. LOST-OppNet uses this mechanism to store user

preferences containing application settings, such as timer limits for each state or the

external webservice address. Following this approach gives two immediate advantages:

Android preferences are usually easy to manage for the final user, through a graphical

screen generated from a XML file, without the need to develop additional code to store

preference values; the Android preferences can be updated in execution time, allowing

changes to be reflected on application behaviour in real-time. For instance, if the

webservice address pointed by the application is offline at start up, one could change to

a working webservice address at execution time, allowing LOST-OppNet to discover

the new address without restarting the application. All preferences are accessible via a

configuration screen included with LOST-OppNet.

Network. The Network component did not changed significantly from the Oppus

implementation. It comprises two subcomponents, being UDP Delegate used for

communication between devices and WiFi Delegate used to establish connections with

other nodes and toggling between infrastructure and ad-hoc modes. UDP Delegate

suffered minor modifications to accommodate with new features. For instance, UDP

Delegate now handles the sending of message streams instead of the hardcoded message

present in Oppus. Section 4.2.5 details the format of message streams and how they are

sent over the network.

26

LOST Environment. Environment is the core of LOST-OppNet. It uses all the

previous mentioned components in order to control the machine state execution and

successfully handle received messages. Environment also allows external apps to be

aware of the LOST-OppNet execution state, by maintaining a public key-value table

accessible by other Android applications. This table contains various entries related to

some of its components. For instance, it is possible to know if the service is currently

active and the current machine state. Messages received are also accessible in a similar

method. These methods are described in detail in section 4.3, where an example of an

external application accessing LOST-OppNet and interacting with LOST Environment

is presented.

By using a modular architecture, LOST-OppNet ensures a correct role distribution

among several small components. This is especially important, as it facilitates the

development of new components and integration with LOST-OppNet, allowing

expanding its functionalities.

 Automatic data gathering 4.2.4

One of the LOST-OppNet components is the Sensor Group. It manages and allows

access to device sensors in order to extract data from them. Android Compatibility

Definition Document (Android CDD) 8 is a document where hardware vendors are

informed about how they should design parts of their hardware in order to meet the

minimum requirements to run Android on their devices. This contains information

about compatibility and recommendations about using some features in Android

devices. Hardware vendors can check it to be aware of the expected capabilities that

devices should or may have in order to run Android.

The Android CDD contains a section with sensor support and recommendation.

Table 4.1 summarizes the sensor support recommendations for devices running

Android. Some of these sensors are preferred to others. For instance, the recommended

sensors are the Accelerometer, Magnetometer, GPS and Gyroscope. Other sensors such

as Barometer or Proximity sensors are allowed, but may be absent in mass-market

devices. To achieve a compromise of having support to a large range of devices and to

allow extracting data that may be useful to infer about device surroundings, LOST-

OppNet uses data from the following device sensors:

 GPS, to obtain the device’s geolocation;

 Accelerometer, to understand if the device is moving;

 Touchscreen, to know if the user interacted with the device.

8 Android Compatibility Definition Document – http://source.android.com/compatibility/android-

cdd.pdf

27

 With these sensors, it is possible to explore data that may be transformed into

useful information for volunteers. GPS can provide geographical coordinates allowing

detection of the device location with high precision. This gives the advantage of

knowing where a victim is, assuming that the victim is in possession of the respective

device. It is also possible to understand if the victim is moving from a place to another,

register the trail done or even measure the total distance travelled. On the other hand,

accelerometers can be useful to detect movement on a smaller scale than GPS. An

accelerometer is capable to report the orientation of the device regarding the Earth’s

magnetic field and the acceleration of the device, usually due user movement.

Information regarding victim movements can thus be obtained from data generated by

this sensor. This may allow inferring if the victim is moving at all.

 These sensors can work without user intervention. This gives two advantages:

first, victims do not need to worry giving an explicit order to the device start gathering

Sensor Recommendation summary

Accelerometer
Device implementations SHOULD include a

3-axis accelerometer.

Magnetometer
Device implementations SHOULD include a

3-axis magnetometer (i.e. compass).

GPS
Device implementations SHOULD include a

GPS receiver

Gyroscope
Device implementations SHOULD include a

gyroscope (i.e. angular change sensor).

Barometer
Device implementations MAY include a

barometer (i.e. ambient air pressure sensor).

Thermometer
Device implementations MAY but SHOULD

NOT include a thermometer.

Photometer
Device implementations MAY include a

photometer (i.e. ambient light sensor).

Proximity Sensor
Device implementations MAY include a

proximity sensor.

Table 4.1 – Android Compatibility Definition Document recommendations

regarding sensor support in hardware devices.

28

data, since the gathering process is done transparently in the background. This leverages

the dependence of LOST-OppNet on the victim, who may be unavailable to interact

with the device; second, the accuracy of data is independent of the victim knowledge.

For instance, a victim can be uncertain or not aware at all of the current location. Instead

of sharing a possibly incorrect location and thus spreading erroneous data to rescuers,

LOST-OppNet relies in sensors data, namely GPS, to get an estimate of the victim

location automatically.

Data gathered from sensors may not be always accurate or useful. These situations

may require some sort of data confidence indicator levels. For instance, when GPS loses

the connection with GPS satellites, it may not report any geolocation until it connects

again. During this period of time, LOST-OppNet reports the last known location with a

flag indicating that the confidence on location is low. An example of high confidence

for the location would be when GPS successfully reconnect to GPS satellites and then

be able to provide updated coordinates. A low confidence flag allows volunteers

analysing the data to understand that particular geolocation data may be treated as a best

effort for providing a valid geolocation and may not exactly represent the place where

the victim is.

 Network messages 4.2.5

 Data would be valueless if there was no channel to share it. Being possibly distant

from rescuers, victims would like to tell others about their condition. Message exchange

between devices is thus an important part of LOST-OppNet.

In Oppus, the message exchange was done when the node is in Station state. While

being connected to a node in Providing state, it prepares an UDP datagram containing a

Java string, followed by a termination character, namely the End-Of-Transmission

character (ASCII: 0x04). The datagram is re-sent periodically until the Station state

timeout is reached, in order to increase the probability of the message reaching

destination. While being sufficient to share a simple text message, this approach has

problems under certain requirements. Text messages are often unstructured. Although

they are flexible enough to represent other formats, an agreement must be done in order

to ensure that the same format is being used in both parts of communication channel. In

spite of existing formats, such as JSON, these may be more useful when using a

communication between different platforms.

LOST-OppNet uses the same communication scheme present in Oppus. A

connection channel is established when a node is in Station state. Then, an UDP

datagram is created to send the message. The difference resides in the message format.

The actual implementation uses a Java class called Message to represent a message.

29

This class is suitable to be exchanged in the network environments. It was implemented

based on the following requirements:

 Every message has an origin identification, a time of creation and a fixed set of

sensor values;

 Some messages may contain an optional text message;

 Two messages should be considered equal if they are created by the same node, at

the same time.

 Message class contains a set of private fields that allow saving the values as

specified by the requirements. Furthermore, it is possible to compare two messages

directly in order to verify if they are the same message. This requirement was

implemented by overriding the native’s Java Object equals and hashcode methods. For

instance, the nodes should avoid duplicates when saving messages, in order to prevent

duplicates dissemination. Figure 4.5 contains the actual code that is responsible for

filtering out duplicates messages. The technique consists in using a Java Set containing

hashcodes from all messages already stored in the LOST-OppNet. When a message is

received, it is added to the sending queue (“mQueue” property) and persistently stored

on the device (“storeMessage” method). However, only new messages are stored and

forwarded. A set containing hashcode of every message received (“duplicates”

property) is used to verify if a received message was already stored. If there is a match,

the message is just ignored, since it is a duplicate. Otherwise, the hashcode of the

message is calculated and then stored in the duplicates set, so in case of receiving that

message again, it is correctly pointed as a duplicate and not processed.

The Message class also implements the Java Serializable class. This allows the

message to be sent over a network, using sockets, and without using additional code to

process the message format, given that both sender and receiver are devices running

Android. However, unlike Oppus, LOST-OppNet frequently needs to send more than

one message at a time. A simple method would be sending all messages sequentially,

each in a different datagram. This approach presents some problems. It was observed

that creating multiple messages using a dedicated UDP datagram for each message

Figure 4.5 – Example of the actual implementation of message duplicate filter.

30

would put an additional delay in communication. Recalling that messages are re-sent

periodically, messages from the first period often overlapped those of the second period,

causing problems in the communication channel. To solve this problem, a class called

MessageGroup was implemented. It consists on a typical Java List containing instances

of Message class and the total of messages transmitted. Because this class also

implements Java Serializable, it is used to be sent over the network instead of using

multiple instances of Message class. Using this approach, a single UDP datagram is

created instead one per message9, reducing the needed time to prepare the datagram and

send the request.

Messages can also be generated automatically or on-demand. Automatically

generated messages are created when the machine state changes to the Station state, that

is, the node is connected to other. These messages are created to ensure that the current

conditions are periodically tracked, including the current geolocation. They require no

user intervention as all content can be extracted automatically. On the other hand, on-

demand messages are explicated created by victim request. These messages contain a

custom text message along automatic gathered data. This means that on-demand

messages are essentially automatic messages with a custom text, explicitly generated

when a victim requests it.

 Internet state 4.2.6

In LOST-OppNet, a new state was developed to provide an additional

communication channel. The Internet state allows connection to the Internet, when

available. This connection is established to send information gathered by the device and

the network to the LOST-Map webservice.

The Internet state has two functions. The first function is to test if an Internet

connection is available on the device. If such connection is unavailable, a transition to

either Beaconing or Scanning state is made, depending on the state before Internet was

Scanning or Beaconing, respectively. This is made in order to ensure the typical

behaviour present in WiFi-Opp, that is, the transition to Scanning is made if the

Beaconing timeout is reached and vice-versa. On the other hand, if a connection to

Internet is available, the data gathered is prepared to be sent to the LOST-Map

aggregator.

9 Due Maximum Transmission Unit (MTU) size, a Message Group may be split into multiple

datagrams. However, given that a Message Group can carry multiple messages and still fit into a single

UDP datagram, there is still an advantage in using Message Group class as opposed to transmitting a

single Message at a time.

31

The integration with LOST-Map is achieved with a remote webservice that allows

the insertion of data. While on Internet state, the device uses the MessageFormatter

subcomponent to create an alternative representation understood by both parts. Since the

LOST-Map webservice runs on a different technology, the agreed format is JSON.

MessageFormatter allows the conversion of a Message to other representations,

including JSON. The Messages that are present in the sending queue are converted to

JSON objects. Then all of these objects are included into a JSON array, in order to send

multiple messages within a single request. When the device successfully establishes a

HTTP connection to the webservice, the JSON array is sent and the device waits for a

reply. The webservice must reply with an HTTP status code telling if the request was

successfully processed. Once the webservice inserts the messages, these are deleted

from the sending queue. This is done to reduce network duplicates for data that is

already secure on the centralized webservice and to reduce the amount of memory

needed by devices to store the Messages that may already be available in the network.

These Messages are, however, persistently stored in the device for later manual

retrieving.

Internet state is optional. On the LOST-OppNet configuration screen, it is possible

to enable or disable the Internet state in real-time, and change the webservice HTTP

address. This was done to make LOST-OppNet more flexible. For instance, in a

situation where Internet is not accessible at the start, the Internet state can be disabled in

order to bypass it. This allows devices to save battery and spend more time on states

that may lead to a successful connection with other devices present in the scene,

allowing the exchange of local information. On the other hand, if an Internet connection

is provided later, this state can be activated without restarting LOST-OppNet, allowing

devices to send victim data to the centralized LOST-Map webservice.

 Communication with other applications 4.2.7

Integration with other Android applications is also possible. In fact, LOST-OppNet

is implemented as an independent Android service. This means that there is no

graphical interface dedicated to interact with LOST-OppNet, but instead, a new or

existing application can be integrated with the service. However, LOST-OppNet is

independent of a graphical interface in order to run. The service could be initiated from

a remote authority while still there is Internet connectivity, only needing to implement

the communication with such authority.

Communication between LOST-OppNet and an external application is done with

an Android Content Provider. Content Providers are similar to white boards, where an

application can write data and others access that data easily. Android relies in Content

Providers for its own operation. For instance, custom words added by the Android

32

device user’s dictionary are stored in the UserDictionary Content Provider10.

Technically, a Content Provider allows other Android applications to access shared

data, stored in a single or multiple relational database tables, using SQLite. The typical

Create, Read, Update, Delete (CRUD) operations are available on Content Providers, to

allow full control of data stored. Each Content Provider is accessible with a Uniform

Resource Identifier (URI). This URI can be split in authority and path. The authority

part is exclusive to each provider. It consists on the fully qualified name for the Content

Provider class. The path is customizable, and is typically the resource name the

application wants to access. LOST-OppNet exposes a Content Provider called

MessagesProvider for public use. The resources available to other applications include

messages stored (received and sent) and contains information about the LOST-OppNet

service status. An external application can access this data to interact with the service

not only to read data, but also to create new messages with a custom text message. For

instance, an external application can create a custom string and append it on the

MessagesProvider, to be sent later.

 Another interesting mechanism offered by Content Providers in general is the

capability of notifying interested parts on data changes in resources, through an Android

Content Observer. For instance, the MessagesProvider promotes and relies in the use of

this mechanism. When a message arrives to a device running the LOST-OppNet service,

the MessagesProvider generates a notification telling that a new message arrived, and

includes an identifier allowing observers to directly get the corresponding message.

10 UserDictionary – http://developer.android.com/reference/android/provider/UserDictionary.html

Figure 4.6 – An external application receiving a notification of a new message

arriving the system, and fetching it from the MessagesProvider.

33

Figure 4.6 shows an example of an application interested in receiving messages from

LOST-OppNet as they arrive. The notifications are also used internally to insert custom

messages from other applications in the sending queue. When a new custom text

message is submitted, LOST-OppNet is notified of its contents and creates a new

message including the custom text. The message is then pushed to the sending queue,

and sent when there is a connection. Although these notifications work as explained on

devices running at least Android 4.1 (API level 16), a workaround is needed to simulate

the same functionality in devices with lower Android versions. This constraint is due

the fact of Android not passing the complete notification URI (i.e. including the new

message identification at the end of the URI) on these versions. Instead, the application

only knows that some data was updated on the resource it was listening for updates.

Basic workarounds consist on fetching all messages and getting only the last one, or

comparing the messages with the already received ones. Although these methods allow

achieving the goal of getting the new message, they require additional workload on the

system.

 In summary, the MessagesProvider component allows external applications to

access data received or created by the LOST-OppNet. By relying in the Android

Content Provider, it is possible to allow controlled access from external applications

with ease. The Android Content Observer allows applications to be notified in real-time

when LOST-OppNet changes it states or receives a new message. This is an important

concept, since it allows more expansion for the LOST-OppNet component. Any

interested programmer could easily deploy an application to work with LOST-OppNet

and expand the functionalities offered by the service, by presenting the data

dynamically to the final user. The next section presents an application designed to

interact with LOST-OppNet following this approach, exploring the full set of

functionalities offered by the service and the MessagesProvider.

4.3 VictimApp: LOST-OppNet in action

The LOST-OppNet also comprises an external application to allow interaction with

the service capabilities. This application is a frontend prototype as would be expected to

see if LOST-OppNet was deployed on real-life scenarios. The application allows a user

to see the LOST-OppNet status and to send a custom message.

The application is called Victim Application or VictimApp for short. The idea of

VictimApp is to provide victims a basic and easy-to-use application to see LOST-

OppNet working. Recalling LOST-OppNet is an Android Service, it has no graphical

interface besides a simple notification on the Android notification centre. This

34

notification alone provides insufficient feedback to the victim. VictimApp provides a

simple graphical interface allowing that tries to answer these questions:

 Is LOST-OppNet running?

 What LOST-OppNet is doing?

 What can I do with LOST-OppNet?

The actual interface of VictimApp can be seen on Figure 4.7. It shows the same

and only screen in two different states. The screen at left shows the application in

Beaconing state, that is, announcing its presence and waiting for connections. The state

is identified by a representative icon and a friendly description. The description was

opted instead of the actual state name due their technical nature. Friendly descriptions

try to describe what is happening with simple language. There is also a text input field

allowing victims to send a custom text message. The send button is disabled until the

victim types at least two characters in the text input, to avoid accidental empty

messages. After typing the desired message and sending it, the text message is added to

the messages sent list, as shown on the screen at right. It is also possible to notice that

the state changed. The old icon is replaced with the new state’s representative icon and

the respective friendly description, being Scanning state in the case.

Connection between the application and LOST-OppNet is done with the Content

Provider described on section 4.2.7. The VictimApp contains two Content Observers.

Each one is responsible for different resources. One of the Content Observers is

Figure 4.7 – VictimApp user interface. On left, current status of LOST-OppNet is

shown. On right, an on-demand message created by the victim is waiting to be sent.

35

responsible for obtaining the most updated LOST-OppNet status. The status includes

the current machine state and whether the service is active or inactive. This allows

VictimApp to update the graphical interface, namely the status icon and the respective

description. The other Content Observer is responsible to listening for messages

received and sent. While not showing all the messages sent by LOST-OppNet, namely

those automatically generated, receiving updates for all messages sent allows the

interface to notify the victim when the on-demand message created by the victim was

sent to the network or even directly to the webservice.

Custom text messages have three possible statuses: waiting, sent to network and

sent to webservice. The “waiting” status is the default for a new message. This indicates

the message was successfully created and is in the sending queue. Its graphical

representation is an hourglass in front of the message. The “sent to network” status

indicates that the message was successfully sent to other devices. It appears as a green

checkmark before the message. However, there is no guarantee that the message was

actually delivered. This is due the nature of the UDP protocol. As seen before, there is

an effort to make the message reach the destination, by sending it periodically while a

connection is open. However, there is no way to confirm that the message was

effectively received by other nodes at this time. The last possible message status is “sent

to webservice”, that indicates the message was successfully sent and received by the

LOST-Map webservice. It appears as a cloud icon before the message contents. Unlike

the sent to network status, this status ensures that the message was successfully

delivered to the webservice. This is possible due the use of HTTP protocol, and the

response code that allows knowing that all messages sent were correctly processed.

In summary, VictimApp is a prototype that takes advantage of LOST-OppNet

capabilities allowing victims to interact with the service and use its functions. It is also a

proof-of-concept to show that an external message can communicate and interact with

LOST-OppNet, taking advantage of it reusability. The VictimApp was also integrated

into a user study to understand how easy to use the application is, and to understand if it

allows people to understand the role of LOST-OppNet status in their rescue. Chapter 7

details this user study, and presents the conclusions reached.

4.4 Summary

This chapter presented LOST-OppNet as a modular and reusable software

component. By implementing an opportunistic network based on the WiFi-Opp

(Trifunovic et al., 2011), LOST-OppNet can connect to other devices running the

service and provide a communication channel to allow automatic data exchange,

leveraging the hotspot functionality available in off-the-shelf devices. This data can be

36

useful to save victims, without depending on them to be gathered. If an Internet

connection is available, LOST-OppNet can also send messages directly to a remote

webservice in order to make them immediately available to possible rescuers.

VictimApp was also presented as a proof-of-concept prototype to help victims on

the field. The application allows victims to understand the current status of LOST-

OppNet and to send a custom text message asking for help or giving information in free

text form. These messages can be exchanged with other devices in surroundings in

order to facilitate the message dissemination.

Important data is generated and gathered using LOST-OppNet. However, data

itself does not provide immediate information about victims. Tools are needed to

transform it into possibly useful information. The next chapter presents LOST-Map as a

set of components to manage and process all data gathered and make it accessible to

volunteers or even official rescuers. This way they can analyse the information and

make a better planning to rescue the victims.

37

Chapter 5

LOST-Map: Detecting victims on a dynamic map

When natural disasters occur, people living in proximity are often the first

candidates to help rescuing other people. Knowing the region is an advantage that some

of the official rescue team members may not have. Even with partial destruction, this

knowledge may still be useful. However, destructive effects may lead to disruption of

line of sight between victims and rescuers. This may cause several problems: physical

barriers can interfere with vision but also with verbal communication, leaving victims in

an isolated state.

Additional tools may help finding victims in such scenarios. Maps are tools

commonly used for an initial deployment of rescue teams at the start of rescuing works.

These maps are usually made of paper, thus static and with low to none forms of

interaction. Besides that, paper maps lack the ability to have context. For instance, the

map itself only shows a static view of the geographical representation of an area. While

it is still possible to draw over the map, research suggests that this may lead to

confusion after some update iterations along other problems (Gunawan et al. 2009). A

dynamic map in a digital format may help to overcome these limitations.

LOST-Map is a dynamic map using currently existing technology. It was

essentially designed for visual exploration, helping volunteers to discover victims

needing help on the field. Important decisions such as which victims should be rescued

are entirely left to the users. It also allows volunteers to infer about victims’ status,

giving the possibility to prioritize victims to rescue and leverage the management of

rescuing resources they may have available.

This chapter starts by explaining the current technology status that allowed the

development of the existing features in LOST-Map. Then concrete implementation

details and functionalities are presented and discussed in order to allow the

understanding of the tool. The graphical component is also presented from a user’s

perspective to allow better comprehension of the dynamic map in a rescuing scenario,

and to present the options LOST-Maps offers to volunteers.

38

5.1 Background

Current technology provides exciting features in every branch of Information

Technology. Web applications are an example of technology evolution. Recently, the

most used web browsers were updated to support new HTML5 technology. A large part

of these technologies can disrupt the traditional role of a webpage. For example, the

new HTML5 Canvas11 allows web developers to draw graphics on web pages on-the-fly

without the need of previously generating them. On the other hand, Asynchronous

JavaScript and XML (AJAX) is a group of technologies also heavily used in modern

web applications. For instance, AJAX allows developers to load content dynamically on

the background without user intervention. This means that the user does not need to

manually refresh the webpage to check for updated content.

Examples of successful web applications include online maps. These applications

provide the same functionalities as provided by paper maps with the addition of real-

time and advanced exploring functionalities. For instance, with online maps a user

could easily change the map scale to see a particular region. Moreover, online maps are

frequently updated. Google Maps is an example of an online maps service. It is free to

use. With Google Maps, users can explore the world map from bird’s eye view to street

view, search for directions and get real-time traffic conditions, among other features.

This service also provides an Application Programming Interface (API) for web

developers needing to integrate the Google Maps functionality on their websites. An

API is a well-defined software contract between the service provider and the developer.

The API is free to use and allow web developers to use the full-featured online maps

according to the business rules for a given project. As seen before, Google Maps API is

flexible enough to use even for simulated world maps.

Another specific type of API is a webservice. Webservices are routines or functions

provided by web applications in order to allow external applications to interact with a

given product in a controlled way. From spell-checkers to plane ticket reserves,

webservices can provide a range of useful services to web developers. From a

perspective of a service provider, launching a webservice could allow easy integration

of existing code with newer systems. Another common use of webservices is the

construction of a bridge between systems using different technologies. Their role in

these situations is to provide a compatibility layer between the systems to allow the

same form of communication. It is then important to establish a common software

contract in order to ensure data consistency. There are two major types of webservices.

The first type is Representational State Transfer (RESTful). RESTful services use a

11 Canvas element specification – http://www.w3.org/TR/html5/scripting-1.html#the-canvas-

element

39

simple approach by defining a Uniform Resource Identifier (URI) to distinguish

between the methods offered by the service. It also has deep integration with the HTTP

application protocol. For instance, if developers would like to use a webservice to store

books on an online database, they just need the URI and the data of the book in an

agreed format, such as JSON or XML. Then, developers would have to issue a HTTP

PUT request to the URI corresponding to the book resource with the data for that

particular book. For retrieving the information, a simple HTTP GET request to the same

URI is the standard way to get information about the previously inserted book. The

other type of webservice is the Simple Object Access Protocol (SOAP). This type is not

as coupled as RESTful is to the HTTP protocol. In fact, it is possible to use SOAP over

other protocols, such as Simple Mail Transfer Protocol (SMTP) or File Transfer

Protocol (FTP). The communication type is also different. While in a RESTful service a

developer would include the data inside a HTTP request, with SOAP the developer

would need to use a XML envelope to include the request and associated data.

Originally, the initial planning for LOST-Map was to develop a tool to allow

visualization of nodes exchanging messages in the network. While technically

significant and feasible using current technology, the tool would be too difficult to be

used by volunteers without previous knowledge in computer networks. The first

problem would be a lack of projection on the real world. To be useful, the data should

be projected over a real-world map, in order to correlate the line of sight between two

devices with the actual paths available on the ground. Other problem would be the

technical terms used. Volunteers would have no interest in knowing the rate of

messages received by nodes. Instead, they would like to know if victims tried to send

any messages and the respective contents.

LOST-Map takes advantage of the technologies mentioned before to provide

volunteers a repository of data regarding victims, with the possibility of seeing that data

correctly aggregated on a dynamic real-world map. On the frontend, LOST-Map uses

Google Maps API to provide an online map to volunteers. Due the flexibility of this

API, it is also possible to include information related with the victims over the map. On

the background, an aggregator contains a database that stores and provides access to

victims’ data. The access to data is done via a RESTful webservice also included in the

aggregator, allowing controlled read and write of information by external applications,

such as LOST-OppNet.

The LOST-Map was implemented with several technologies. The frontend was

developed in HTML5, CSS and JavaScript. The aggregator component was developed

with the common Linux, Apache, MySQL and PHP (LAMP) stack. These technologies

40

were chosen due the previous knowledge on them, and also due their popularity and

easy deployment in case of needing an unplanned service up and running.

5.2 Implementation

LOST-Map can be split in two large components. It consists on a web application

that provides a graphical user interface to volunteers, and a webservice to allow access

to victims’ data by the interface and other interested external applications. Each of these

two features was implemented as separate components. The first one is the frontend,

which contains the graphical user interface to volunteers. It consists on an online map

with a special overlay containing information about victims. The other component is the

aggregator. It comprises a repository for all data gathered and sent to the LOST-Map

and a webservice to provide controlled and abstract access to the data stored on the

aggregator. These components were designed to be loosely coupled, so they are

physically independent, that is, the victims’ data could be stored elsewhere, and the

frontend still be able to access the data. Figure 5.1 contains a diagram with the

representation of actual LOST-Map architecture.

 Frontend 5.2.1

The frontend is the component that offers volunteers an online map with victims’

information. The map is based on the Google Maps API and offers the basic

functionality available, such as zooming and general map navigation. On top of that,

other functionalities were developed. An overlay was implemented in order to show

victims’ geographical locations on the map. That overlay offers volunteers useful

information regarding the victims’ trail. A trail made by a victim is a set of points

gathered periodically by a LOST-OppNet device. A point may include automatically

detected movements or screen activations, to understand if the victim is interacting with

Figure 5.1 – LOST-Map system architecture. The frontend and aggregator

components are loosely coupled to reduce the dependence on each other.

41

the device. It also includes messages sent by the victim at that point, if any. By default,

the map shows only the last known point of each victim at the corresponding

geographical location. Then, it is possible to see the trail for a single victim, along the

messages that the victim may have sent. This means that it is possible to choose a victim

at a time and then see the complete trail that the victim did during the disaster scene.

The map also allows showing these points dynamically, that is, to only show points

matching certain criteria. LOST-Map includes features to filter data based on time,

information contained by each point, and by victim rescue status, that is, if the victim is

safe or not. Other tools are also available to help volunteers on their mission. For

instance, it is possible to search for a victim using their name or part of it. By writing

the victim’s name on a search box, the system compares the search term with the

victims’ names in real-time and then generates a list of all matching victims. A

functionality called Critical Area was also developed to allow volunteers drawing a

zone on the map for their personal reference.

Another interesting feature of LOST-Map frontend is the real-time update

capability. Volunteers can have the map always open and receive data from new victims

automatically. This allows the interface to update the existing information according to

most updated data about the victims. Volunteers can then follow the victims that they

are interested in rescuing more accurately. For instance, if a trail for a victim is drawn

on the map, when a new point for that victim is added to the map, the trail is updated to

show the new location. These real-time updates were implemented using the pooling

method. This means that the webservice is periodically asked for new points.

 Aggregator 5.2.2

The other main component of LOST-Map is the aggregator. Its responsibility is to

ensure that victims’ data is correctly stored, remains consistent and that read and write

requests done to this data are satisfied. It is possible to split the aggregator in two large

subcomponents: data storage and webservice.

The data storage is the place where all victims’ data is stored. It consists on a

MySQL database with a relational schema to retain several records, each of them with a

well-known number of properties. The actual relational schema is summarized on Table

5.1, with an indication of the concrete fields used, their restrictions and their purpose for

the system. Some efforts were done to improve data consistency while writing data.

When inserting a new record, the nodeid and timestamp fields form a unique pair that

uniquely identifies that record, that is, a single and unique message from a victim at a

given time. This was done to prevent duplicate messages from the same victim to be

inserted in the system. Recalling that nodes on LOST-OppNet may generate and

42

disseminate some duplicates, the nodeid and timestamp pair prevents a duplicate to be

inserted into the victims’ data thus granting a reasonable level of data consistency.

The other subcomponent of the aggregator, the webservice, provides read and write

access to the victims’ data. The webservice acts as a controller to simplify the access to

the data. It offers several methods for reading data, and a single method to insert new

records. Writing requests are typically issued by devices running LOST-OppNet. As

previously described on section 4.2.6 LOST-OppNet creates a JSON array containing

one or several messages from the victims. That array is sent directly to the webservice

through the write method using the HTTP protocol. The points are then inserted into the

victims’ data set, excluding any duplicates of data already existing. On the other hand,

there are multiple read methods to access victims’ data. This was done to make the

webservice simpler to be used by developers. By using multiple methods, it is possible

to filter victim’s data in several arrangements and obtain a customized view over the

data according to specific needs. For instance, the webservice has methods to filter data

by victim, by timestamp and even by a given region. The Annex A contains detailed

information regarding the methods available on the webservice and examples on how to

use them.

Table “Points”

Name Field parameters Field purpose

nodeid Char(100), Primary Key Victim unique identifier

timestamp Long, Primary Key Time of message creation

latitude Long Latitude of victim

longitude Long Longitude of victim

llconfidence Integer Confidence level for latitude/longitude pair

battery Integer Current battery level of device

movements Integer Number of movements detected by device

so far

screen Integer Number of screen activations detected by

device so far

distance Long Unused. Reserved for future use

safe Integer Code to indicate if the victim was marked as

safe or not

added Long Local date when the record was added to the

table

Table 5.1 – Schema of the table responsible for storing the victims’ data.

43

5.3 Dynamic visualization tool

LOST-Map interface was implemented as a web application. The interface

implements the features described so far, making them accessible to potential users.

Furthermore, a study was conducted in order to validate the ease of use of the tool.

Details regarding this study are presented in Chapter 6.

The application can be used for two purposes: viewing historical data and viewing

real-time data about a disaster scene. Viewing historical data implies the possession of a

file containing the data to be seen. That is a Comma Separated Values (CSV) file

having all messages exchanged during the previous disaster scene. The file is imported

through a dedicated webpage. After the successful import, the map is cleared and shows

the data that was uploaded. All filtering functions remain available in order to allow

restriction by time and victims’ data. The other mode allows seeing real-time data from

a current disaster scene. For a live disaster scene, this mode should be used. It requires

no configuration at all from the volunteers. They can just open the LOST-Map interface

and wait for data to be displayed on the screen. When devices running LOST-OppNet

find an Internet connection available, they immediately send all messages they collected

so far to the webservice. The result is that data being displayed on the map, when the

most recent data is requested. The volunteer can then use all the functionalities available

on the interface to refine the search for victims.

The focus of this work will be regarding the real-time mode, since it allows

exploring the full potential of the tool. Next sections contain interface details and

functionalities available to volunteers using LOST-Map.

 Interface layout 5.3.1

The interface elements were disposed like a typical online map application, as seen

on Figure 5.2. This ensures that users start with a familiar structure and quickly

understand how to operate with the interface and locate the resources they need. The

figure shows a possible start screen when a volunteer opens the map during a disaster

scene. It is possible to immediately identify three large areas on the interface:

Time-frame control (top). The first area at the top is the slider responsible for

controlling the time-frame visible on the map. With this control, a volunteer can restrict

the period of time to show data on the map. The slider contains two handles, allowing

restricting the time between two known dates. For instance, a volunteer willing to

analyse the moment before the disaster should moving the left handle to the desired start

time and the right handle to the moment immediately before the disaster. Then the

volunteer can only see the victims that appeared during that period of time. When the

44

slider is fully extended, as in Figure 5.2, it shows all victims, regardless time

constraints.

Map (left). The second and most prominent area is the map. It was developed

using the Google Maps API, allowing the display of a real-world map with ease. In the

current scene, it is possible to see some markers drawn on the map. Each marker

represents a different victim. The initial set of markers indicates the last point where

each victim was located within the selected time-frame. The map allows the standard

Google Maps views, such as Map view, with an actual vectorial representation of the

real-world map, and Satellite view, to allow bird’s eye viewing of the scene, using static

satellite images. These modes can be changed without affecting the markers already

existing on the map. Zooming is also available, allowing volunteers to geographically

filter some zones. A button at top centre of the map was placed to allow volunteers

returning to the original view. This is useful when a volunteer needs to temporarily

check the neighbourhoods and then wants to return to the disaster scene when feeling

lost. By using this functionality, the volunteer can return to the disaster scene

immediately at any time in a single action.

Figure 5.2 – Typical screen for LOST-Map interface.

45

Tools bar (right). The sidebar at right allows access to a set of tools designed to

help volunteers on finding victims. The buttons at top allow access to the Critical Area

and filters. The first button allows the setup of a Critical Area. It allows a volunteer to

draw circle on the map for private future reference. The circle can be resized at any time

and also removed. The second button provides access to the filters that allow

categorizing victims, using colours to distinguish between them. These filters will be

discussed shortly. On the sidebar, the volunteer can also search for victims with a

known name. For instance, a volunteer can search for the name of a known victim or

part of it. The search is done at real-time. All matches are presented in a list, containing

the victim name and the last-seen time. Then, the volunteer can choose the most suitable

victim and check the associated information. Figure 5.3 shows these functionalities in

action to give an idea of their behaviour in a typical scenario.

 Features implementation 5.3.2

LOST-Map contains filtering, categorization as well as other features to help

volunteers analysing the information presented on the map dynamically, according to

their needs. These features are described verbosely in this section.

The time based filtering is controlled by the slider positioned above the map. It

allows restricting the time interval to a certain period of time. This filter may be useful

in cases when there are several points during a large irrelevant period of time for the

situation. For instance, if the data gathering started at Sunday morning, and the disaster

occurred between the 8 PM and 11 PM of that day, victim information during morning

may be irrelevant to the rescue scene. With the time based filter, a volunteer could

restrict the time-frame to 7 PM of Sunday and 2 AM of Monday to see the victims

immediately before, during and after the disaster.

Another useful filter is based on data gathered by the victims. Recalling that sensor

information gathered on LOST-OppNet may include user movements or screen

activations, among others. This filter allows volunteers to make a basic categorization

system allowing them to have more focus on victims showing stronger signals about a

given sensor value. This filter does not actually remove points from the map, but shows

them in a different colour, using a semaphore analogy. Figure 5.4 and Figure 5.5 show

an example of this colour filter functionality. For instance, a volunteer that would like to

have more focus on victims having lower movements could define the colour scale

within the predefined values. The points on the map would be represented as red for

victims with lower movements, yellow for intermediate values and green for victims

with a high number of movements. Using the colour scheme ensures that no victim is

left out of the map while still providing a method of categorizing them. This scheme

allows volunteers to focus more on victims that may need immediate rescuing or split

46

efforts among victim groups. The last filter available is the victim safety status. It is a

binary option, where it is possible to filter out some victims, that is, hiding victims that

are already safe and out of the scene, in order to reduce the visual clutter on the map.

This filter can also be seen of the filter settings screen (Figure 5.4).

 Each marker on the map also contains information about that particular point.

When a volunteer clicks on a certain marker, the corresponding trail appears on the map

along a pop-up with sensor data for that particular point (Figure 5.3 (A) and (B)). This

allows the volunteer to view the distance travelled by the victim. The pop-up also

allows navigation between points, to the next or previous point. With these buttons, the

volunteer can navigate geographically and temporarily, thus being able to analyse the

route of that particular victim. Each pop-up contains information about the data

gathered at that point, such as the time of the day, battery level and number of

movements. With this data, a volunteer could infer about the victim status at that

position and try to understand the evolution of the victim’s condition by observing the

path points and their characteristics.

Figure 5.3 – LOST-Map interface with the (A) balloon, (B) trail, (C) message list,

(D) search and (E) Critical Area functionalities in action.

47

Figure 5.4 – LOST-Map interface after applying a filter. The markers are coloured

according to the chosen scale on the filter settings screen.

Figure 5.4 – Filter settings screen. It is possible to choose a measure and the colour

range according to a semaphore analogy (from left to right: red, yellow and green).

48

The pop-up also contains a notification of text messages sent by victims, if any. A

point carrying a message additionally contains the contents of the message written by

the victim in a highlighted form. The marker icon has a mail envelope, telling that

particular point has a text message. In case the point is out of the sight of the volunteer,

or for other reason it was not noticed, a small notification is included in the pop-up for

every point of the trail. It offers the option to show all messages on the toolbar (Figure

5.3 (C)). The toolbar has the indication of the total amount of messages sent by the

selected victim, a list of every message sent by the victim and allows centring the map

on a particular point containing a message. This shortcut allows a volunteer to

immediately check the messages of the victim without needing to analyse the complete

path and look manually for text messages.

Other additional features are also included in the LOST-Map interface. It is

possible to search for a victim using their name or part of it (Figure 5.3 (D)). By writing

the victim’s name on the search box, the system compares the search term with the

victims’ names in real-time. A list of matching victims is shown and the volunteer could

pick up the one that seems more appropriate. The result would be the map centring on

that victim, in the last-seen position. Given that volunteers often try to look for relative

or friends in first place, this functionality allows them to quickly search for known

victims. Other functionality present is the Critical Area (Figure 5.3 (E)). This function

allows a volunteer to draw a circle on a certain zone of the map. The original idea was

to promote interaction between volunteers and giving them the opportunity to share a

location where a special event may occur. This event could be a safe zone or even a

dangerous one. However, the functionality was not fully developed. Currently, it is

implemented as a tool allowing volunteers to define a region for any purpose, such as

future reference. That region can be resized or recreated any time and any changes are

visible only locally. Figure 5.3 shows these functionalities being used simultaneously.

5.4 Summary

This chapter introduced the LOST-Map tool and its components. LOST-Map

contains an aggregator component responsible for managing the victims’ data and a

frontend component responsible for promoting a way of using the data available to

transform it into useful information to detect victims in a disaster scenario.

The integration with LOST-OppNet should be clear at this point. LOST-OppNet

sends its data to the aggregator component, specifically to the webservice. This

webservice stores the data on the data storage to be later accessed by volunteers. This

interaction is done using standard web technologies. An overview and examples on how

to use the LOST-Map interface were also presented. LOST-Map frontend contains a

49

graphical interface with features to allow discovering victims more efficiently with the

combination of filter and additional functionalities.

The next chapter presents an evaluation of the LOST-Map tool to understand if the

tool can be used by untrained volunteers and if they understand how to use the tool

without having previous knowledge about its functionalities.

50

51

Chapter 6

User study: evaluating LOST-Map

To assess if LOST-Map can be a useful and usable tool for untrained volunteers, a

user study was conducted. It comprised a number of tasks that simulated the typical use

cases that LOST addresses, such as searching for victims or analysing the situation after

a disaster. This study was done for an early version of LOST-Map. While the study may

contain issues that were already addressed in the current graphical interface, the

conclusions were important to enhance the tool and to understand how potential users

interact with LOST-Map.

6.1 Apparatus

A typical desktop computer was used to access the LOST-Map interface.

Specifically, the users accessed the map through the Firefox web browser, chosen due

its compatibility with Google Maps and its immediate availability on the equipment. For

data gathering, paper questionnaires were given to participants and a cell phone with

voice recording capability was used to record the final interview.

6.2 Participants

A convenience sample of ten participants was recruited. Ages ranged from 22 to 51

(mean=27.3 , SD=8.6). All participants had some experience with using Google Maps

and good knowledge of the scenario areas. Participants were offered no compensation.

6.3 Procedure

Participants were given a paper script containing an introductory description of

LOST-Map and its purpose, along with three tasks to do. At the end, a semi-formal

interview was done with each participant in order to gather additional feedback from

them regarding the tool and its usefulness.

A task consisted in a fictional disaster scenario present on the LOST-Map interface.

The goal of each task was to use the resources that LOST-Map offered to locate and

52

identify victims of the disaster according to certain requirements expressed by the task.

These scenarios were generated in advance using a computer program and inserted right

before each task start, in order to ensure a clean scenario in each run. Annex B contains

the detailed script for all tasks, along screenshots exemplifying the expected results on

the screen.

The moderator was responsible for measuring completion times for each task. After

each task, participants were asked some questions to understand their comprehension

regarding the interface and functionalities. After that, they were asked to answer a

between-task survey with a single question. After all tasks were completed, participants

were administered a final questionnaire, to assess their overall perception of LOST-

Map, and a final semi-structured interview.

6.4 Measures

For each task, the following set of measure was collected:

 Total amount of time to conclude each task;

 Whether the participant concluded each task without giving up;

 Number of questions that participants asked the moderator;

 Ease of use as measured by the Single Ease Question (SEQ) (Sauro et. al. 2009),

from 1 (“very difficult”) to 7 (“very easy”).

SEQ is a standardized usability measure, whereby users are asked to complete the

statement “Overall, this task was:” using a Likert scale. Overall perceptions were

measured with the AttrakDiff (Schaik et. al. 2012) questionnaire of user experience, in

the ten-item version. AttrakDiff is a set of semantic differentials that inform on

subjective perceptions of pragmatic quality, hedonic quality and attractiveness.

6.5 Results

All participants concluded successfully all tasks proposed. The mean time to

conclude each task is presented in the Table 6.1. As expected, as tasks were completed

in increasing degree of difficulty, participants needed more time to conclude task #3,

which was closer to a real world situation, requiring a combination of techniques learnt

from the first two tasks. Scores for the SEQ are also presented in Table 6.1. The average

SEQ score is in line with the task completion time: the more complex the task is, the

less easy users found it.

The total number of questions asked by participants was also measured. By

comparing the average number of questions between task #1 and task #2, as well as the

observations done by the moderator on the study, conclusions about the decreasing

53

number of questions can be made. For instance, the task #1 was relatively easy, by

having a small number of victims all of them being visible, without requiring the use of

filters. However, the participants were presented the interface for the very first time and

asked about less clear interface elements. It was also observed that some participants

preferred to confirm tasks with the moderator before actually doing it on the interface.

The moderator tended to allow the participant to discover how to continue

autonomously. General conclusions are that participants asked more of the moderators

in the most complex task. It was also observed that the number of help requests

increased as the task was getting more difficult.

An AttrakDiff questionnaire was used to evaluate the full experience provided by

LOST-Map. Each semantic differential was given a score ranging from one to seven,

the latter being the most positive score. The first four differentials are indicators of

pragmatic quality and second four are indicators of hedonic quality. All results are

between five and seven in the seven points scale. Responses to AttrakDiff were on the

positive side of the differentials, but it seems participants perceived LOST-Map

interface to have greater pragmatic quality than hedonic quality. The primary focus

during the development of LOST-Map interface was the introduction of useful

functionalities to filter and understand data gathered from LOST-OppNet. While this

does not necessarily mean that the hedonic aspect of user experience was neglected, it

was a factor with a slight lower priority. On the other hand, participants seemed to

understand how to work with the proposed tool and found that it is easy to operate with.

The final interview also allowed gathering additional feedback regarding

functionality. In general, participants missed text search functionality, not available in

this early prototype. They claimed that searching for a specific victim with textual

information, such as name or phone number would be easier then looking victim for

victim, while trying to find a specific victim. Since the tool was primarily designed for

volunteers, who may know the victims, this suggestion seemed to be relevant to the

current work.

 Avg. task completion time Avg. SEQ score Avg. help requests

Task #1 1m48s (SD=37s) 5.50 (SD=1.08) 0.7 (SD=0.7)

Task #2 1m58s (SD=46s) 5.70 (SD=1.34) 0.6 (SD=0.5)

Task #3 2m43s (SD=99s) 4.50 (SD=1.58) 1.0 (SD=1.2)

Table 6.1 – Average completion time, average SEQ score and average number

of help requests for each task.

54

Another functionality criticized was the colour filter. The colour filter allowed

participants to give more focus to victims with certain criteria. This filter was used in

task #3 instead of manual search, due the elevated number of victims present on the

map. Problems were mainly generated by the slider used to change the colour range.

The assessed version of LOST-Map offered the possibility of omitting a colour from the

scale. Recall that the slider range had three colours to define ranges, namely red, yellow

and green. For instance, if a volunteer would only want red and green, volunteer could

drag one handler into another in order to have only two colour scale. Participants found

this behaviour unusual and unexpected, while some participants found the feature an

unnecessary complement. Concerns about the expected effect after changing the scale

were issued. Participants did not feel confident about the feedback provided by the scale

alone. In general, a pre-visualization was desired to understand the changes made by the

colour range filter. In the assessed version of LOST-Map, this kind of feedback was

inexistent.

Messages were a topic of concern by the participants. The previous LOST-Map

version contained a simple list of messages when choosing a victim from the map.

However, that list was only a text list of messages sent by the victim along the

corresponding sending date and time. Participants missed an option to quickly jump to

Figure 6.1 – AttrackDiff results for LOST-Map as perceived by participants.

55

the location where the message was sent. The order of the messages was also

unexpected for some participants. The list was formerly ordered by a descending date

and time, that is, the most recent message would appear at the top. A small fraction of

participants were expecting older messages to be at top, order chronologically.

Furthermore, there was no indication about the order neither an option to personalize

this aspect.

6.6 Conclusions

Overall, the results validated LOST-Map interface as an effective and easy-to-use

tool for use by untrained volunteers. Participants seemed to adapt easily to the majority

of the features offered by the tool. The study allowed finding some areas of

improvement regarding the tool’s usability. Some of them were addressed on the current

version of the LOST-Map interface. A search functionality was implemented, allowing

direct access to a victim, by knowing the victim’s name. The colour filter was also

subject of several improvements. For instance, the slider was redesigned to remove the

feature of omitting a colour from the scale. Moreover, a new preview below the slider

now allows volunteers to understand how the markers on the map will be recoloured.

The results and observations indicate that the LOST-Map can be efficiently used by

untrained volunteers. This aspect is important as volunteers may often need to quickly

deploy rescuing tools in disaster scenarios. As previously demonstrated, LOST-Map

may be quickly deployed on scenarios where LOST-OppNet powered devices are

already operating.

56

57

Chapter 7

User study: evaluating LOST-OppNet

A user study was conducted in order to assess if LOST-OppNet can connect to

other devices and evaluate the overall perception about the VictimApp usability.

Specifically, RescueOppus and VictimApp introduced in Chapter 3 and Chapter 4

respectively were used in conjunction with LOST-OppNet in order to simulate a

disaster scenario and allow message exchange on the field. Recalling that VictimApp

uses the LOST-OppNet service, by evaluating the performance of VictimApp, it is also

possible to see if LOST-OppNet is working as desired.

7.1 Apparatus

In this study, RescueOppus and VictimApp applications were used. RescueOppus

is a native Android application with a purpose similar to LOST-Map. It contains a map

showing detected victims and allows real-time updates of the current situation. This tool

is suitable for volunteers. VictimApp is a tool suitable for victims, with the possibility

of advertising the victim’s presence and send a text message to nearby volunteers. Both

tools use LOST-OppNet to communicate with each other. The RescueOppus was

deployed on a Samsung Galaxy Tab2 10.1 device, while the VictimApp was deployed

on a Samsung Galaxy Ace smartphone. Both devices were previously disconnected

from the Internet. The RescueOppus application was designed to alert the user both

visually and audibly for unexpected events. For instance, when an unexpected event

occurred, the device issued an audible alert along with a small notification at the bottom

of the map.

Paper questionnaires were administered between tasks. Two moderators were

responsible for ensuring the completeness of each task, helping the participants if

strictly necessary.

58

7.2 Participants

Ten participants were recruited to take part in this study, three of them being

female. Their ages ranged from 23 to 29 (mean=25 , SD=2.3). All participants had

previous knowledge on using Internet and online maps, and good knowledge on the area

used by the scenarios. Participants were offered no compensation.

7.3 Procedure

The study consisted on a rescue gamification, with two tasks, each one with its own

scenario. Each task was intended to simulate a disaster, with the inclusion of two

participants: one played the role of a volunteer and other played the victim role. The

goal of the volunteer was to use the RescueOppus application to find fifteen victims

who were still alive and make decisions according to the information that the

application provided in real-time. On the other hand, the role of the victim was to use

the VictimApp in order to give the volunteers clues about the victim’s presence. Other

victims were fictitious, computer-generated, and were physically represented by post-its

placed in advance at fixed locations. Each of those victims had unique characteristics,

such as name and personalized indicators regarding the victim’s condition.

Each scenario consisted on a small region that was allegedly affected by a natural

disaster. It had multiple groups of computer-generated victims. Some of the victims

inside a group could be alive while others were unconscious. To rescue one or multiple

alive victims from a group, the volunteer had to stay two minutes in the place where

they found them. Then, a popup on the RescueOppus application would indicate that the

rescue was complete and the volunteer could continue its mission. During this time, the

volunteer had to time analyze the map and decide the next group to move on. Both

scenarios were identical at the start. Two groups of victims at equal distance were

presented in RescueOppus. Both groups had eleven victims. However, one group had

more victims alive than the other. The volunteer’s decision was to choose a group to

start. After choosing the initial group, the volunteer had to save the victims in that

group. From that point on, more groups appeared, with different situations according to

the scenario.

On the scenario #1, after the first group, volunteers were confronted with another

challenge. They had to choose between two groups, both at the same distance and

containing an equal number of victims alive. The difference between groups was the

most prominent indicator. For instance, victims on one group had stronger indicators

regarding screen activity while others had stronger indicators regarding micro-

movements. The goal of this challenge was to understand if volunteers had preference

for particular indicator and if indicators were important to them.

59

The scenario #2 had a slightly different approach, with more unexpected events.

After saving the initial group of victims common to both scenarios, volunteers were

confronted with two groups, one being closer to the volunteer than the other. However,

a careful analysis of the victims on the closer group would reveal a text message telling

the most direct way between the groups was blocked. So, it was the responsibility of the

volunteer to choose an alternative way to reach those victims. Also, the victim

responsible for sending the alert had left a trail on the map, suggesting an alternative

way. If the volunteer missed those clues, the moderator would be forced to give new

instructions on following the alternative way. The goal was to understand how easily

volunteers would interpret clues from victims. After finding the alternative way, another

unexpected challenge took place. During the path to the final group of victims, other

group appeared. This new group was close to the path, however away enough to require

the volunteer to change its path. The idea was to test how volunteers would react to

unexpected events occurring on the map. There were two actions possible: save the new

group of victims or ignore it. In both situations, the volunteers had to save the final

group in order to reach the fifteen victims goal and terminate the task.

On the other hand, the victim role on both scenarios was to interact with

VictimApp and send some messages. These messages contained the text message along

information gathered automatically by LOST-OppNet, including the victim’s

geographical location. The victim was inserted on one of the groups and under

supervision by a moderator, who was available to ask for help if strictly needed.

During the study, each group of two participants was invited to be part of two

tasks. In the first task, one of the participants was the volunteer while the other played

the victim role. On the second task, they inverted their roles to give everyone the

opportunity to use both applications. A questionnaire was given to each participant at

the end of the task, according to their role. The questionnaires goal is to assess users’

experience with the applications and the communication. Annex C contains the model

questionnaires presented to users.

7.4 Measures

A set of measures were gathered in order to allow evaluation of the applications

used. For VictimApp, the measures were:

 User perception that a message leaves the device;

 User thinks that the VictimApp is useful during the rescue;

 Ease of use as measured by the Single Ease Question (SEQ) (Sauro et. al. 2009),

from 1 (“very difficult”) to 7 (“very easy”).

60

Measures for VictimApp allow understanding if messages were successfully

exchanged, and if users were aware of messages being sent from their devices to the

network. The second measure is extracted from the victim questionnaire, using the

question “Did you think that VictimApp was relevant to your rescue?” with Yes or No

being the possible answers. The last two measures allow gathering the users’ opinion

regarding the VictimApp and its usefulness during a disaster scenario. The

questionnaires also contained additional questions to check if users could retain some

VictimApp interface elements immediately after using the application, in order to check

if the interface is simple enough to allow victims retaining all the information provided.

Annex C contains the complete set of questions presented to users.

7.5 Results

All tasks were completed successfully by all participants. Table 7.1 presents the

details for each component evaluated. In general, participants understood how to

operate the application, namely the message-sending mechanism. When questioned

about how to send a message without looking at the application screen, every

participant was capable of correctly describing the steps to send a message to the

network. They also understood that after sending a message it would appear into a list

along a symbol indicating whether the message was sent or is still waiting for a

connection. However, the status icon associated with each message was subject of

confusion. Some of the participants did not notice it until a message was sent to the

network, where the icon would change to a different one. A suggestion made regarding

the icons was to put a label on the screen indicating the possible icons and their

respective meaning. The LOST-OppNet status was also identified by majority of the

participants. When inquired about the current status of LOST-OppNet, participants

revealed more confidence. The status is represented by an icon as well, however it also

contained a descriptive text such as “Connected, sending messages” or “Looking for

VictimApp evaluation results for both scenarios

Application usefulness/relevancy

during a disaster
90%

Victims that noticed messages

being exchanged
80%

Single Ease Question mean=6.3 , SD=0.7

Table 7.1 – Detailed results for the aspects evaluated in VictimApp.

61

other nearby nodes...” indicating the status purpose along the icon. This could explain

the better performance on identifying the application status opposing to identifying the

message status.

Regarding the tool usefulness during a disaster scenario, the majority of the

participants told that it would be useful in that kind of situation. Participants’ comments

confirm the drawbacks found in message feedback. The features that participants notice

lacking of where: 1) more feedback regarding message sending confirmation (e.g. either

using a popup or device vibration); 2) more information regarding the statuses icons,

that is, what is the application doing exactly.

Regarding the VictimApp usability, participants found the application easy to use:

the average SEQ score was 6.3 points out of 7. This means that the tool is simple

enough to understand, as desired. Under disaster scenarios, victims may not pay

attention to their devices, due panic or other external factors. With this in mind, the

VictimApp was designed to be easy to understand and operate when needed.

Additionally, some information is gathered on the background, as part of LOST-OppNet

functionality, and thus needing a short attention span from the victim to operate with the

application.

7.6 Conclusions

A study to verify that users understood the purpose of the VictimApp was carried

out with positive results. At the same time, LOST-OppNet was subject of testing, and

conclusions are that the tool is able to connect to other instances. However, this

connection may be subject of failures due some environment constraints. Namely, the

GPS connection may interfere with the search for victims, due to unknown or imprecise

location. Besides that, the messages are correctly exchanged in the majority of the cases,

some of them even when nodes are dozens of meters apart. VictimApp tool is also easy

to use, according to the test results, which may reveal useful when users’ attention is

affected by stress or other factors during a disaster.

62

63

Chapter 8

Conclusions

This section presents a final overview regarding all work developed so far. It also

comprises a critical review of the developed LOST project components along with

perspectives of future developments for them.

8.1 Overview

The LOST project is a rescuing oriented prototype to allow untrained volunteers to

look for victims in the field and allow these victims to communicate back to them. The

base premise of LOST is that people on the field should be empowered with tools to

allow helping victims in need. LOST-OppNet is a shared component developed to allow

network communication using readily-available devices in scenarios where typical

connections may be unavailable. With that goal in mind, an Android application

designed for victims was developed. VictimApp uses LOST-OppNet to communicate

with other devices and requires little to no interaction by the victim. On the other hand,

a tool to empower volunteers was also developed. LOST-Map allows volunteers to look

for victims in a dynamic and updated map. The interface offers dedicated

functionalities, allowing them to quickly find victims by name or even by indicators

made available by the victim’s device sensors. The tool also acts as a shared repository

of data, allowing communication between LOST-OppNet and the map interface, as well

as applications that may be developed in the future.

Overall, developing these components of LOST project was a challenging work.

First of all, LOST contains more than one technology. This required the development of

common platform to cope with technologies differences. For instance, the

communication between LOST-OppNet and LOST-Map is currently established using a

webservice; the LOST-OppNet network message format was also target of some

modifications to be readable by that webservice. On the other hand, LOST is specially

designed for untrained people without ability in rescuing others. The main goal is to

give more power to people who are willing to help, and not to replace the typical

64

rescuing teams, specialized and trained for disaster scenarios. LOST is beneficial from

the point of view that it can provide additional information about the victims’ location

along with other data that may be useful to understand if the victim is fine and responds

to external events, such as the notifications generated by VictimApp.

Studies also benefited both tools. By receiving users’ feedback, it was possible to

develop newer functionalities that were more in line with the view of possible rescuers.

By putting people in fictional scenarios of disaster with the mission of saving friends

and relatives, they were able to think “how can I use this tool to my benefit?” and

provide feedback accordingly. This can specially be seen on the LOST-Map study,

where users suggested additional features according to their needs. Some of the

suggestions were interesting and highly requested among the participants. Some of them

were integrated in the current version of LOST-Map presented in this work.

8.2 Limitations

Some limitations were found in the final stages of LOST project development.

They represent opportunities to reflect about the current implementation and improve

the project.

LOST-OppNet communication can be significantly enhanced. Currently, it only

allows one-way communication, from victims to rescuers. The communication could be

done both ways, also allowing rescuers to communicate with victims. This is currently

a challenge, as such communication often is preferred in real-time, requiring a stable

connection channel, which may be inexistent in disaster scenarios. The geographical

location gathering method should also be enhanced. In the current implementation, a

smartphone GPS sensor is used to guess the victim’s location. However, GPS

performance can be poor inside buildings and other situations, as concluded in the

Chapter 7. This is especially important when victims are indoors. Thus, a better

mechanism of gathering the victim’s geographical location could be researched in order

to allow the detection in such environments, even with a small error margin. Data

gathering in general is also currently limited to the available sensors for each device.

Moreover, smartphone sensors were developed to smartphone operation purposes, that

is, detect the device orientation or if the device is falling. This means that data would

not be recommended to be used for medical purposes, and thus, it may be inaccurate to

evaluate the victims’ condition.

LOST-Map could also be improved. Volunteers are still in doubt when using some

of the functionalities, revealing several points to improve the tool. For instance,

categorization of victims is still dependent of information gathered by device sensors,

which may reveal less useful in more specific scenarios. Other problems with visual

65

representations are still on the table: how and when victims should be grouped? Should

high amounts of victims’ automatically gathered information be grouped, being possible

to lose small important details? On the other hand, an Internet connection is still needed

to exchange data between the LOST-OppNet and the LOST-Map aggregator, since that

LOST-OppNet applications would try to contact a predefined webserver running an

LOST-Map aggregator. Reducing this dependence would help volunteers to create a

local aggregator, enabling information to be exchanged directly from devices to the

aggregator, without requiring external connections.

8.3 Future work

LOST project is an ongoing effort. A lot of improvements are possible to be

applied in a near future or even added as long-term goals for the whole project.

Currently, there is no way of remotely triggering LOST-OppNet based applications

to wake up and start gathering data. Although it can be developed with currently

available technology, for instance using a cloud messaging system, such as Google

Cloud Messaging, the implementation could represent a privacy concern, since LOST-

OppNet may run silently on devices. For example, users could be monitored by using a

locally deployed LOST-Map instance and then gather data about the users’ device,

including their geographical location. Smartphones sensors could also be explored to

extract more data from them. Recently, new innovations allowing integration between

users’ health and smartphones are arising. For instance, wearable technologies such as

Sony SmartBand12 or Samsung Gear Fit13 allow a deeper interaction with users, by

estimating their steps or heart rate. Despite these products being primarily designed for

sports, they could be also used in the context of rescuing. This would mean that LOST-

OppNet would be able to gather data closely related to the victims’ condition, offering

better information to be shared with volunteers and rescuers.

Collaboration between volunteers could benefit LOST-Map interface. They could

use LOST-Map interface to plan their rescue works and report when finding a victim, in

collaboration with official rescuers. This would allow volunteers to work together and

summing their efforts to rescue the victims. They could also be able to chat with others

and share their views on the scene. There were some steps taken in this direction. The

Critical Area feature presented in section 5.3 was intended to be used as a common area,

shared by all volunteers. However, the feature was too simplistic and future

developments towards it were dropped. In the future, the functionality could

intelligently identify zones with large number of victims and label them automatically.

12 Sony SmartBand – http://www.sonymobile.com/global-en/products/smartwear/smartband-swr10
13 Samsung Gear Fit™ – http://www.samsung.com/us/mobile/wearable-tech/SM-R3500ZKAXAR

66

Moreover, it could also be useful for planning purposes, distributing groups of

volunteers among specific zones, with reports or tasks to accomplish, in real-time.

On the other hand, LOST-Map aggregator could be redesigned to allow a more

decentralized architecture. Currently, LOST-Map aggregator contains a database where

points of all victims are stored. This means that an Internet connection may be needed

in order to receive information regarding new victims. The LOST-Map aggregator could

be partly integrated with every device running LOST-Map interface, storing the scene in

their view. This view would be updated as the volunteer was exploring the scene. Then,

when two or more volunteers were in range, they could exchange all their views and

create a global view of the scene.

In summary, LOST project is capable of providing a basic support to victims and

volunteers in simulated disaster scenarios with untrained volunteers. While still not

being tested to be deployed in a real-life disaster scenario, LOST tools are being

developed aiming to provide support in such conditions. With the consumer electronics

evolution, people are more likely to carry a smart device with them, augmenting the

chances of deploying a solution like LOST-OppNet in their devices for a foreseen

disaster. This would also mean that more data could be extracted from health-related

sensors, allowing better estimates regarding victims’ condition, giving LOST a bright

future regarding a deeper integration with the victim and more collaboration between

volunteers.

67

Bibliography

Al-akkad, A. et al., 2014. Help Beacons: Design and Evaluation of an Ad-Hoc

Lightweight S . O . S . System for Smartphones. In M. Jones et al., eds. CHI ’14

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.

ACM New York, NY, USA, pp. 1485-1494

Belblidia, N. et al., 2011. PACS: Chopping and shuffling large contents for faster

opportunistic dissemination. In 2011 8th International Conference on Wireless On-

Demand Network Systems and Services, WONS 2011. pp. 9-16

Chipara, O. et al., 2012. WIISARD. In Proceedings of the 10th international conference

on Mobile systems, applications, and services - MobiSys ’12. New York, New

York, USA: ACM Press, p. 407

Gunawan, L.L.T. et al., 2012. TravelThrough: a participatory-based guidance system for

traveling through disaster areas. Proceedings of the 2012 ACM annual conference

extended abstracts on Human Factors in Computing Systems Extended Abstracts -

CHI EA ’12, pp. 241–250

Gunawan, L.T. et al., 2009. Collaborative Situational Mapping during Emergency

Response. In L. Norros et al., eds. European Conference on Cognitive Ergonomics:

Designing beyond the Product - Understanding Activity and User Experience in

Ubiquitous Environments. VTT Technical Research Centre of Finland.

Hashmi, N. et al., 2005. A sensor-based, web service-enabled, emergency medical

response system. In Proceedings of the 2005 workshop on End-to-end, sense-and-

respond systems, applications and services (EESR '05). USENIX Association,

Berkeley, CA, USA, pp. 25-30

Nishiyama, H., Ito, M. & Kato, N., 2014. Relay-by-smartphone: realizing multihop

device-to-device communications. IEEE Communications Magazine, 52(4), pp. 56–

65

Qu, Y. et al., 2011. Microblogging after a major disaster in China. In Proceedings of the

ACM 2011 conference on Computer supported cooperative work - CSCW ’11.

New York, New York, USA: ACM Press, p. 25

Ramesh, M. V., Jacob, A. & Devidas, A.R., 2012. Enhanced emergency communication

using mobile sensing and MANET. In Proceedings of the International Conference

on Advances in Computing, Communications and Informatics - ICACCI ’12. New

York, New York, USA: ACM Press, p. 318

68

Sammarco, M. et al., 2012. PePiT. In Proceedings of the third ACM international

workshop on Mobile Opportunistic Networks - MobiOpp ’12. New York, New

York, USA: ACM Press, p. 79

Sauro, J. & Dumas, J.S., 2009. Comparison of three one-question, post-task usability

questionnaires. In Proceedings of the 27th international conference on Human

factors in computing systems - CHI 09. New York, New York, USA: ACM Press,

p. 1599

Trifunovic, S. et al., 2011. WiFi-Opp: Ad-Hoc-less Opportunistic Networking. In

Proceedings of the 6th ACM workshop on Challenged networks (CHANTS '11).

ACM, New York, NY, USA, pp. 37–42

Van Schaik, P., Hassenzahl, M. & Ling, J., 2012. User-Experience from an Inference

Perspective. ACM Transactions on Computer-Human Interaction, 19(2), pp. 1–25

Vieweg, S. et al., 2010. Microblogging during two natural hazards events: what twitter

may contribute to situational awareness. In CHI 2010: Crisis Informatics April 10–

15, 2010, Atlanta, GA, USA. pp. 1079–1088

Wagner, T. et al., 2004. COORDINATORS coordination managers for first responders.

Proceedings of the Third International Joint Conference on Autonomous Agents

and Multiagent Systems, 2004. AAMAS 2004

Wu, A., Yan, X. & Zhang, X. (Luke), 2011. Geo-tagged mobile photo sharing in

collaborative emergency management. In Proceedings of the 2011 Visual

Information Communication - International Symposium on - VINCI ’11. New

York, New York, USA: ACM Press, pp. 1–8

69

Annex A. LOST-Map webservice details

Victim information (data structure)

The victim information consists on a JSON array containing objects. Each object

represents a single point from a single victim and has a set of fields, based on key-value

pairs, containing useful information regarding the victim condition at a specific

location. The next table summarizes the fields you may find while decoding the JSON

structure:

Key Description

nodeid Victim unique identification.

timestamp The time in milliseconds since 1-Jan-1970 registered by the victim

application. It corresponds to the time when the message was created in the

client. It is usually composed by 13 digits.

msg The text message written by the victim, if any.

latitude Represents the point latitude, used for geographical positioning.

longitude Represents the point longitude, used for geographical positioning.

llconf Confidence of the geographical coordinates. Currently, '0' means that the

coordinates were obtained from the last known location, while '10' means

that the exact geographical location was retrieved directly from the GPS,

and should be treated as accurate. This field is intended for future use.

battery Current battery level reported by the victim application.

steps Number of steps detected by the victim application, if sensors are

available.

screen Number of times that the screen was turned on by the victim, if available.

distance Currently, this field has no meaning. Distance should be calculated by the

client consuming the webservice, if needed. It should return NULL of -1.

safe Tells if the victim marked itself as safe (1) or not (0). Possible values are 1

and 0.

added The time in milliseconds since 1-Jan-1970 when the message was received

by the webservice. This value should be used to get new data periodically,

minimizing the number of points to process.

70

Methods available

The available methods allow control of victims' data and interaction with other features

in LOST-Map.

/rest/victims

Retrieves information regarding all registered victims (HTTP GET) or allows the

insertion of points to new or existing victims (HTTP POST).

Request

Verb Parameter Description

GET — Gets all points for every victim registered in webservice. This

method doesn't accept parameters.

POST data

(JSON array)

Must contain victim information in JSON format. This method

allows the insertion of multiple victim information. You should

send an array even if you intend to send only one record.

Response

HTTP

code

Internal

code

Response

200 — Returns all victims' points. Example:

Request:
GET /rest/victims

Response:
[

 {

 "nodeid":"Alberto",

 "timestamp":"1385888400000",

 "msg":"",

 "latitude":"38.7531",

 "longitude":"-9.15618",

 "battery":"92",

 "steps":"0",

 "screen":"1",

 "distance":null,

 "safe":"0",

 "added":"1385888400000"

 },

 {

 "nodeid": ...

 },

 ...

]

71

Request:
POST /rest/victims/

...

data=[{"nodeid":"Alberto",

"timestamp":"1385888400000", ... }, { ... }]

Response:
{ "sent":2, "inserted":2 }

400 801 The sent string was not correctly interpreted. It could be damaged,

incomplete or with wrong syntax. Manually check the data sent to

this method and ensure that the string is an array with information

for each victim in the string format. You should send an array even

if you intend to report only one victim.

400 802 No victim information had been received. This means that the

information was correctly decoded but there are no victim records.

Please ensure that the records are being sent along with your

request. Also check if the data is being sent in JSON array format

even if you intend to report only one victim.

/rest/victims/mintimestamp

Retrieves information about victims' points with a given minimum timestamp.

Request

Verb Parameter Description

GET long numeric type

(ex:

1234567890123)

Represents the minimum timestamp from which points

are included in result. The time to compare is the time

when the message was registered in the database and not

the client application timestamp. The exact match is also

included. point.added >= parameter.

Response

HTTP code Internal code Response

200 — Example Request:
GET /rest/victims/mintimestamp/1234567890123

Response:
[

 {

 "nodeid":"Alberto",

 "timestamp":"1300000000000",

 "msg":"",

 "latitude":"38.7531",

72

 "longitude":"-9.15618",

 "battery":"92",

 "steps":"0",

 "screen":"1",

 "distance":null,

 "safe":"0",

 "added":"1300000000000"

 },

 {

 "nodeid": ...,

 "added": 1234567890123,

 ...

 },

 ...

]

/rest/victims/lastpoints

Retrieves the last points for every victim.

Request

Verb Parameter Description

GET positive integer

numeric type

(ex: 5)

Retrieves the N last points of every victim. Semantically, the

result is a collection of the most updated entries of each

victim in the disaster. Without parameters, this method

returns the very last record (one entry) per victim.

Response

HTTP code Internal code Response

200 — Example Request:
GET /rest/victims/lastpoints

Response:
[

 {

 "nodeid":"Alberto",

 "timestamp":"1300000000000",

 "msg":"",

 "latitude":"38.7531",

 "longitude":"-9.15618",

 "battery":"92",

 "steps":"0",

 "screen":"1",

 "distance":null,

 "safe":"0",

 },

 {

 "nodeid": "Bernardina",

 "timestamp": 1234567890123,

 ...

 },

 ...]

73

200 — Example Request:
GET /rest/victims/lastpoints/2

Response:
[

 {

 "nodeid":"Alberto",

 "timestamp":"1300000000000",

 "msg":"",

 "latitude":"38.7531",

 "longitude":"-9.15618",

 "battery":"92",

 "steps":"0",

 "screen":"1",

 "distance":null,

 "safe":"0",

 },

 {

 "nodeid":"Alberto",

 "timestamp":"1299999999999",

 "msg":"",

 "latitude":"38.7531",

 "longitude":"-9.15618",

 "battery":"92",

 "steps":"0",

 "screen":"1",

 "distance":null,

 "safe":"0",

 } {

 "nodeid": "Bernardina",

 "timestamp": 1234567890123,

 ...

 },

 ...

]

/rest/victims/llbbox

Retrieves information about victims' points within a given pair of coordinates forming

a latitude/longitude bounding box.

Request

Verb Parameter Description

GET Exactly two pair of

coordinates split by

commas, ex:

lat1,lon1,lat2,lon2

Get the victims' point within the given coordinates

of bounding box. The bounding box is created a

follows: the top left point is composed placed in

(lat1,lon1) coordinates, while the bottom right

point is placed in (lat2,lon2).

74

Response

HTTP

code

Internal

code

Response

200 — Example Request:
GET /rest/victims/llbbox/38.7855,-9.15618,38.7605,-

9.145

Response:
[

 {

 "nodeid":"Alberto",

 "timestamp":"1300000000000",

 "msg":"",

 "latitude":"38.7613",

 "longitude":"-9.15532",

 "battery":"92",

 "steps":"0",

 "screen":"1",

 "distance":null,

 "safe":"0",

 "added":"1300000000000"

 },

 {

 "nodeid": ...,

 "timestamp": 1234567890123,

 ...

 },

 ...

]

400 802 The bounding box values are incorrectly formatted. You must

pass two pair of coordinates split with commas. The . (period)

character must be used as decimal separator for each latitude or

longitude value.

/rest/victims/id

Retrieves all points for a single victim.

Request

Verb Parameter Description

GET victim id

(string)

Gets all point information for a single victim ID. The ID is

case-insensitive.

Response

HTTP code Internal code Response

200 — Example Request:
GET /rest/victims/id/alberto

75

Response:
[

 {

 "nodeid":"Alberto",

 "timestamp":"1300000000000",

 "msg":"",

 "latitude":"38.7531",

 "longitude":"-9.15618",

 "battery":"92",

 "steps":"0",

 "screen":"1",

 "distance":null,

 "safe":"0",

 "added":"1300000000000"

 },

 {

 "nodeid": "Alberto",

 "timestamp": 1234567890123,

 ...

 },

 ...

]

76

77

Annex B. LOST-Map study tasks

Task #1 - Analyze the path of a victim

Scenario: Around 12:30 PM, a fire broke out in Cidade Universitária, Lisbon. Despite

not causing major damages, the fire created a thick cloud of smoke. Victims felt

difficulties in breathing and their vision was affected. You were one of the first to

escape the area and to alert the authorities. You don’t know if your friend Arnaldo (who

was also in the area) escaped. You want to find him without putting your safety at risk,

and for that you're going to use the LOST-Map.

Task: Access the map. Locate Arnaldo on the map and observe the path he made.

Define a critical area to indicate the origin of the fire zone, according to the place from

where people seem to flee.

Questions to analyze subject comprehension:

1. Where is the start point of Arnaldo’s path?

2. Where is the end point of Arnaldo’s path?

3. The path start point of all victims is inside the critical area? (expected answer

depends on how subject draws the critical area)

State of the user interface when the task starts:

78

Typical state at the end of the task:

Task #2 – Limit data temporally

Scenario: Today is March 5, 2013. Yesterday at 10 PM, there was a strong storm in

Campo Grande, Lisbon. According to the weather forecasts, the wind reached speeds of

120 Km/h, causing physical damages in the area. This morning you visited your friend

Joana, who was on the area. She said to you between 1 AM and 2 AM she sent some

messages using LOST-OppNet. However, she was so confused and can’t remember

what happened. You’re going to use LOST-Map to understand what happened.

Task: Access the map. Adjust the timeline to the period indicated by Joana. Locate her

position on the map. Check the messages she sent.

Questions to analyze subject comprehension:

1. What was the temporal space you defined to find the victim? (Expected answer is

between 1 AM and 2 AM)

2. How many messages did the victim sent? (Expected answer must be exactly 2

messages)

3. What are the contents of each messages and their time? (Expected answer must be:

first message at 1:15 AM and second message at 1:37 AM, telling that an elderly is

in danger and needs help

79

State in the beginning of the task:

Typical state at the end of the task:

Task #3 - Distinguish victims using different criteria

Scenario: Today is December 2, 2013. Yesterday there was a major earthquake in

Lisbon, at 9 AM. LOST-OppNet was active on some devices present in the area

moments before the disaster. Thus some data of people in the area were collected and

80

can be viewed on LOST-Map. The recovery work was started yesterday during day

time and many of the victims were rescued. It was also reported that some victims

managed to escape the area however they were not officially registered as being safe.

Today at 6 AM, it is known that there are still some victims that cannot move and are

missing. You offer yourself to help other volunteers to find those victims. You decide to

use LOST-Map to help you on your mission.

Task: Access the map. Locate victims that there were not already saved (use filters you

find suitable to support your task).

Questions to analyze subject comprehension:

1. How many victims do you find stationary? (Expected answer is 3)

2. Which filters did you use to support your decision? (Expected answer should

include “Steps” or “Distance traveled” filters, plus exclusion of people reported as

being safe)

State in the beginning of the task:

81

Typical state at the end of the task:

82

83

Annex C. LOST-OppNet study questionnaires

Thank you for participating in this study. The goal of this work is to evaluate a set

of components from the LOST project. LOST is a project aiming to provide a functional

prototype to allow detection of victims who are affected in natural disasters and provide

support to people who volunteer to rescue them. Today we are evaluating the

component designed to volunteer rescuers and the component designed to victims.

Assume that a disaster happened at Faculdade de Ciências about 30 minutes ago. It

is known that there are victims over the campus and communication channels such as

WiFi or cellular network are down. We want to test if LOST-OppNet and Rescue-

Oppus can help people to rescue victims and give victims the power to ask for help

without relying on the Internet or other communication methods.

Volunteers will be given a tablet running the rescue support application, where they

can see victims and some information about them. Victims would be given a

smartphone running the victim application, VictimApp for short. With the application

they can send messages and their location, allowing a victim to be detected in a map.

Some messages are sent automatically in the background, when a connection between a

victim device and others (e.g. rescuer device) is available.

To make this study we created a small game. The goal is to rescue 15 people in the

least time possible. There are 2 scenarios. One of the participants will be chosen to be

the volunteer rescuer and the other will be the victim. When changing scenarios,

participants will switch their roles (volunteer will be the victim and vice-versa).

Game rules for the rescuer:

 You can only save victims who are alive. Not all victims are alive, so you must

be careful to distinguish them

 To save the victims, you need to be in range of the group you want to save, and

then a first-aid symbol will appear on-screen. To save all victims of that group,

you must tap the symbol and wait 2 minutes (map will give you further

instructions)

 There will be more than 15 victims. This means you can choose some victims

over others in order to achieve your 15 victims goal (don’t worry, they will be

fine!)

 Each scenario ends when the rescuer saves 15 victims

84

Games rules for the victim:

 You are expected to use the victim app. You should also send some messages

and analyse the application behaviour while sending them.

 On the second scenario, you should walk around the area to indicate that you are

alive

Questionnaire Rescuer (scenario 1)

1 – Did you notice groups with people both alive and not appearing to be alive?

O Yes

O No

If you answered “Yes”, pick all options that led to your conclusion:

□ Graph of micro-movements

□ Graph of screen activations

□ Victim’s last update

□ Others. Please enumerate: ___

2 – On game start, there were two groups of victims. Which one did you choose first?

O Group near Torre do Tombo

O Group near C5

Please justify your choice (pick all that apply):

□ The group appeared to be closer to me

□ The group appeared to have more victims alive

□ The group appeared to have less victims alive

□ Others. Please enumerate: ___

3 – Did you notice a new victim appearing on the map, near C5?

O Yes

O No

4 – After saving the victims near C5 the map showed you other two groups to choose from.

Which one did you choose?

O Group near C8

O Group near Horta da FCUL/C2

85

Please justify your choice (pick all that apply):

□ The group appeared to be closer to me

□ The group appeared to have more victims alive

□ Victims had more indication of micro-movements

□ Victims had more indication of screen-activations

□ Others. Please enumerate: ___

Overall, using the Rescue-Oppus was:

 Very difficult Very easy

O O O O O O O

Questionnaire Victim (scenario 1 and 2)

1 – At some moment, you sent a message to the network. Please enumerate the steps you

did to send your message and what happened after sending it:

__

__

__

2 – Regarding the message you have sent, do you think that your message reached its

destination?

O Yes

O No

O Don’t know

If you answered “Yes”, please tell how you were informed about message confirmation. If you

answered “No” or “Don’t know”, please tell what do you were expecting to confirm the

message was received:

__

__

3 – The victim application contains some information regarding connectivity to other

devices. Did you notice any activity (at all) on the victim app?

86

O Yes

O No

If you answered “Yes” please tell the elements/events you remember that allowed you to notice

the application was working:

__

4 – Did you think that VictimApp was relevant to your rescue?

O Yes

O No

Please tell at least one positive/strong point and at least one negative/weak point you found on

the VictimApp in the given regarding the situation:

Positive: __

Negative: ___

Overall, using the VictimApp was:

 Very difficult Very easy

O O O O O O O

Questionnaire Rescuer (scenario 2)

1 – Did you notice groups with people both alive and not appearing to be alive?

O Yes O No

If you answered “Yes”, pick all options that led to your conclusion:

□ Graph of micro-movements

□ Graph of screen activations

□ Victim’s last update

□ Others. Please enumerate: ___

2 – On game start, there were two groups of victims. Which one did you choose first?

O Group near Torre do Tombo O Group near C5

87

Please justify your choice (pick all that apply):

□ The group appeared to be closer to me

□ The group appeared to have more victims alive

□ The group appeared to have less victims alive

□ Others. Please enumerate: ___

3 – Did you notice a new victim appearing on the map, near C5?

O Yes O No

4 – After saving the victims near C5, some special events happened. Pick all that apply:

□ There was a victim in the map with a message telling the way was obstructed

□ The moderator who was with me explicitly alerted that the way was obstructed

□ There was a victim on the map which trail suggested an alternative way

□ Others. Please explain: __

5 – When (if) an additional group appeared on your route to victims near C8, what was

your first decision?

O I didn't noticed any additional group

O Immediately save the new group and then the other

O Ignore the new group and save only the other you already planned to rescue

Why did you opted for that decision: __

Overall, using the Rescue-Oppus was:

 Very difficult Very easy

O O O O O O O

